南京大学学报(自然科学版) ›› 2019, Vol. 55 ›› Issue (3): 392–400.doi: 10.13232/j.cnki.jnju.2019.03.006

• 地面沉降 • 上一篇    下一篇

上海地面沉降对轨道交通安全运营风险评估

吕海敏1,沈水龙2*,严学新3,史玉金3,许烨霜1   

  1. 1. 海洋工程国家重点实验室,上海交通大学船舶海洋与建筑工程学院,上海,200240; 2. 汕头大学工学院土木与环境工程系,广东,515063;3.上海市地质调查研究院,上海,200072
  • 收稿日期:2019-01-29 出版日期:2019-06-01 发布日期:2019-05-31
  • 通讯作者: 沈水龙 E-mail:shensl@stu.edu.cn
  • 基金资助:
    上海市科学技术委员会科研计划(18DZ1201102)

Risk assessment of metro system induced by land subsidence in Shanghai

Lü Haimin1,Shen Shuilong2*,Yan Xuexin3,Shi Yujin3,Xu Yeshuang1   

  1. 1. State Key Laboratory of Ocean Engineering,School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China; 2. Department of Civil and Environmental Engineering,College of Engineering,Shantou University,Shantou,515063,China; 3. Shanghai Institute of Geological Survey,Shanghai 200072,China
  • Received:2019-01-29 Online:2019-06-01 Published:2019-05-31
  • Contact: Shen Shuilong E-mail:shensl@stu.edu.cn

摘要: 地面沉降灾害对基础设施的安全运营造成了很大的威胁. 轨道交通作为一种线状结构穿越于上海软土地层中,地面沉降灾害不可避免地会对轨道交通的安全运营产生影响,轨道交通自建成以来长期遭受地面沉降灾害带来的风险. 基于梯形模糊AHP(Analytical Hierarchical Process)和集对分析法,通过主客观相结合的方式,以GIS(Geographic Information System)平台为分析工具,对上海地面沉降造成轨道交通沉降风险进行全面综合的评估,从而得出以考虑基础设施安全为侧重点的地面沉降防治区划以及轨道交通沿线的沉降风险等级. 分析表明,采用梯形模糊AHP与集对分析相结合的方法可以对区域地面沉降综合风险进行合理有效的评估,并对重要基础设施所在区域的风险等级进行合理的识别. 轨道交通沿线沉降风险等级表明中心城区以北和靠近黄浦江地区的轨道交通相比于其他区域具有较高的沉降风险,建议对该部位的轨道交通线路采取必要的沉降监测及防治措施.

关键词: 地面沉降, 轨道交通沉降, 风险评估, 模糊层次分析

Abstract: Land subsidence disasters pose a great threat to the safe operation of infrastructure. As linear structures,metro systems cross the soft soil layer in Shanghai. Land subsidence disasters inevitably affect the safe operation of metro system. Metro system has long suffered from the risks of land subsidence since its completion. Based on trapezoidal fuzzy Analytical Hierarchical Process(AHP)and Set Pair Analysis(SPA),using the combination of subjective and objective analyses,this paper attempts to assess the risk of metro system settlement caused by land subsidence in Shanghai. Moreover,the land subsidence prevention zoning with the emphasis on infrastructure safety and the settlement risk level along the rail transit are obtained. The results show that the combination of trapezoidal fuzzy AHP and SPA can reasonably and effectively assess the risk of regional land subsidence,and reasonably identify the risk level of the important infrastructure. The settlement risk level within 500 m along the metro system indicates that the metro system in the north of the central city and close to the Huangpu River areas have higher settlement risk than other areas. It is recommended to take monitoring and prevention measures for the metro system in this area.

Key words: land subsidence, metro system settlement, risk assessment, fuzzy AHP

中图分类号: 

  • TU981
[1] 高建平,王 舸. 轨道交通枢纽灾害风险等级评估方法研究. 中国安全生产科学技术,2014,10(9):55-60.(Gao J P,Wang G. Study on evaluation method of disaster risk level for rail transit junction. Journal of Safety Science and Technology,2014,10(9):55-60.)
[2] 王寒梅. 上海市地面沉降风险评价体系及风险管理研究. 博士学位论文. 上海:上海大学,2013.(Wang H M. The risk assessment system and risk management of land subsidence in Shanghai. Ph. D. Dissertation. Shanghai:Shanghai University,2013.)
[3] 于 军,束龙仓,温忠辉等. 锡西-澄南典型地面沉降区地面沉降风险评价. 地质学刊,2012,36(1):74-79.(Yu J,Shu L C,Wen Z H,et al. Risk evaluation of ground subsidence in typical ground subsidence zones of western Wuxi and southern Jiangyin areas. Journal of Geology,2012,36(1):74-79.)
[4] Lyu H M,Sun W J,Shen S L,et al. Flood risk assessment in metro systems of mega-cities using a GIS-based modeling approach. Science of the Total Environment,2018,626:1012-1025.
[5] Sato H P,Abe K,Ootaki O. GPS-measured land subsidence in Ojiya City,Niigata Prefecture,Japan. Engineering Geology,2003,67(3-4):379-90.
[6] 刘 冀,王本德. 基于组合权重的模糊可变模型及在防洪风险评价中应用. 大连理工大学学报,2009,49(2):272-275.(Liu Y,Wang B D. Variable fuzzy model based on combined weights and its application to risk assessment for flood control engineering. Journal of Dalian University of Technology,2009,49(2):272-275.)
[7] Lyu H M,Shen S L,Arulrajah A. Assessment of geohazards and preventative countermeasures using AHP incorporated with GIS in Lanzhou,China. Sustainability,2018,10(2):304.
[8] Xu Y S,Yuan Y,Shen S L,et al. Investigation into subsidence hazards due to groundwater pumping from Aquifer II in Changzhou,China. Natural Hazards,2015,78(1):281-96.
[9] Chai J C,Shen S L,Zhu H H,et al. Land subsidence due to groundwater drawdown in Shanghai. Geotechnique,2004,56(2):143-147.
[10] DOS Santos S M,da Silva Pereira Cabral J J,da Silva Pontes Filho I D. Monitoring of soil subsidence in urban and coastal areas due to groundwater overexploitation using GPS. Natural Hazards,2012,64(1):421-39.
[11] 张 云,薛禹群. 抽水地面沉降数学模型的研究现状与展望. 中国地质灾害与防治学报,2002,13(2):1-6,24.(Zhang Y,Xue Y Q. Present sitution and prospect on the mathematical model of land subsidence due to pumping. The Chinese Journal of Geological Hazard and Control,2002,13(2):1-6,24.)
[12] 叶耀东,朱合华,王如路. 软土地铁运营隧道病害现状及成因分析. 地下空间与工程学报,2007,3(1):157-160,166.(Ye Y D,Zhu H H,Wang R L. Analysis on the current status of metro operating tunnel damage in soft ground and its causes. Chinese Journal of Underground Space and Engineering,2007,3(1):157-160,166.)
[13] 吴怀娜,顾伟华,沈水龙. 区域地面沉降对上海地铁隧道长期沉降的影响评估. 上海国土资源,2017,38(2):9-12,25.(Wu H N,Gu W H,Shen S L. Evaluation of the influence of land subsidence on the long-term settlement of metro tunnels in Shanghai. Shanghai Land & Resources,2017,38(2):9-12,25.)
[14] Shen S L,Wu H N,Cui Y J,et al. Long-term settlement behaviour of metro tunnels in the soft deposits of Shanghai. Tunnelling and Under-ground Space Technology,2014,40:309-323.
[15] 葛大庆,张 玲,王 艳等. 上海地铁10号线建设与运营过程中地面沉降效应的高分辨率InSAR监测及分析. 上海国土资源,2014(4):62-67.(Ge D Q,Zhang L,Wang Y,et al. Monitoring subsidence on Shanghai Metro line 10 during construction and operation using high-resolution InSAR. Shanghai Land & Resources,2014(4):62-67.)
[16] Zou Q,Zhou J Z,Zhou C,et al. Comprehensive flood risk assessment based on set pair analysis-variable fuzzy sets model and fuzzy AHP. Stochastic Environmental Research and Risk Assessment,2013,27(2):525-546.
[17] Lyu H M,Shen S L,Zhou A N,et al. Perspectives for flood risk assessment and management for mega-city metro system. Tunnelling and Underground Space Technology,2019,84:31-44,doi:10.1016/j.tusf.2018.10.019.
[1] 杨 蕴, 宋 健, 朱 琳, 吴剑锋, 王锦国. 基于KELM地面沉降替代模型的地下水多目标管理模型研究[J]. 南京大学学报(自然科学版), 2019, 55(3): 349-360.
[2] 董少春,种亚辉,胡 欢,黄璐璐. 基于时序InSAR的常州市2015-2018年地面沉降监测[J]. 南京大学学报(自然科学版), 2019, 55(3): 370-380.
[3] 曹 群,陈蓓蓓,宫辉力,周超凡,罗 勇,高明亮,王 旭,史 珉,赵笑笑,左俊杰. 基于SBAS和IPTA技术的京津冀地区地面沉降监测[J]. 南京大学学报(自然科学版), 2019, 55(3): 381-391.
[4] 徐成华,谈金忠,骆祖江,李 兆. 地铁盾构施工引发地面沉降三维流固全耦合数值模拟预测[J]. 南京大学学报(自然科学版), 2019, 55(3): 409-419.
[5] 叶 超,田 芳,罗 勇,王新惠,田苗壮,崔文君,王立发,雷坤超. 北京地面沉降控制区划及防控措施[J]. 南京大学学报(自然科学版), 2019, 55(3): 440-448.
[6] 严学新,杨天亮,林金鑫,黄鑫磊,王建秀. 超深基坑减压降水引发地面沉降的估算及其影响因素分析[J]. 南京大学学报(自然科学版), 2019, 55(3): 401-408.
[7] 杨建民,于佳卉,霍王文. 区域性地面沉降形状参数c1与c2间线性关系研究[J]. 南京大学学报(自然科学版), 2019, 55(3): 420-428.
[8] 毛 磊,张 岩,刘明遥,龚绪龙,于 军,叶淑君. 江苏沿海地区地面沉降约束下的地下水可采资源量评价[J]. 南京大学学报(自然科学版), 2019, 55(3): 429-439.
[9] 罗 跃,严学新,杨天亮,叶淑君,吴吉春. 上海陆域地区地下水采灌与地面沉降的时空特征[J]. 南京大学学报(自然科学版), 2019, 55(3): 449-457.
[10] 卢 毅,于 军,龚绪龙,王宝军,魏广庆,季峻峰. 基于DFOS的连云港第四纪地层地面沉降监测分析[J]. 南京大学学报(自然科学版), 2018, 54(6): 1114-1123.
[11]  杨 蕴1,朱 琳2*,林 锦3,王锦国1.  考虑地面沉降约束的地下水模拟优化管理模型[J]. 南京大学学报(自然科学版), 2016, 52(3): 470-478.
[12] 贺小桐1,叶淑君1*,于军2,吴吉春1,龚绪龙2. 基于固体颗粒速度场的三维地面沉降模拟[J]. 南京大学学报(自然科学版), 2015, 51(6): 1268-1278.
[13]  江效尧,黄兵**
.  优势模糊区间目标粗糙集模型的群决策规则获取及应用*[J]. 南京大学学报(自然科学版), 2012, 48(4): 429-435.
[14]  叶淑君 1 ** , 薛禹群 1 , 吴吉春 1 , 李勤奋 2 .  基于修正麦钦特模型的地面沉降模拟:以上海为例*

[J]. 南京大学学报(自然科学版), 2011, 47(3): 291-298.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 林 銮,陆武萍,唐朝生,赵红崴,冷 挺,李胜杰. 基于计算机图像处理技术的松散砂性土微观结构定量分析方法[J]. 南京大学学报(自然科学版), 2018, 54(6): 1064 -1074 .
[2] 段新春,施 斌,孙梦雅,魏广庆,顾 凯,冯晨曦. FBG蒸发式湿度计研制及其响应特性研究[J]. 南京大学学报(自然科学版), 2018, 54(6): 1075 -1084 .
[3] 梅世嘉,施 斌,曹鼎峰,魏广庆,张 岩,郝 瑞. 基于AHFO方法的Green-Ampt模型K0取值试验研究[J]. 南京大学学报(自然科学版), 2018, 54(6): 1085 -1094 .
[4] 许 林,张 巍*,梁小龙,肖 瑞,曹剑秋. 岩土介质孔隙结构参数灰色关联度分析[J]. 南京大学学报(自然科学版), 2018, 54(6): 1105 -1113 .
[5] 卢 毅,于 军,龚绪龙,王宝军,魏广庆,季峻峰. 基于DFOS的连云港第四纪地层地面沉降监测分析[J]. 南京大学学报(自然科学版), 2018, 54(6): 1114 -1123 .
[6] 胡 淼,王开军,李海超,陈黎飞. 模糊树节点的随机森林与异常点检测[J]. 南京大学学报(自然科学版), 2018, 54(6): 1141 -1151 .
[7] 洪思思,曹辰捷,王 喆*,李冬冬. 基于矩阵的AdaBoost多视角学习[J]. 南京大学学报(自然科学版), 2018, 54(6): 1152 -1160 .
[8] 魏 桐,童向荣. 基于加权启发式搜索的鲁棒性信任路径生成[J]. 南京大学学报(自然科学版), 2018, 54(6): 1161 -1170 .
[9] 秦 娅, 申国伟, 赵文波, 陈艳平. 基于深度神经网络的网络安全实体识别方法[J]. 南京大学学报(自然科学版), 2019, 55(1): 29 -40 .
[10] 陆慎涛, 葛洪伟, 周 竞. 自动确定聚类中心的移动时间势能聚类算法[J]. 南京大学学报(自然科学版), 2019, 55(1): 143 -153 .