南京大学学报(自然科学版) ›› 2018, Vol. 54 ›› Issue (6): 1075–1084.doi: 10.13232/j.cnki.jnju.2018.06.003

• 环境工程地质学专栏 • 上一篇    下一篇

FBG蒸发式湿度计研制及其响应特性研究

段新春,施 斌*,孙梦雅,魏广庆2,顾 凯,冯晨曦   

  1. 1.南京大学地球科学与工程学院,南京,210023;2.苏州南智传感科技有限公司,苏州,215123
  • 接受日期:2018-05-07 出版日期:2018-12-01 发布日期:2018-12-01
  • 通讯作者: 施 斌,E-mail:shibin@nju.edu.cn E-mail:shibin@nju.edu.cn
  • 基金资助:
    国家自然科学基金重点项目(41230636),国家重大科研仪器研制(41427801)

Study on FBG evaporative hygrometer and its response characteristics

Duan Xinchun1,Shi Bin1*,Sun Mengya1,Wei Guangqing2,Gu Kai1,Feng Chenxi1   

  • Accepted:2018-05-07 Online:2018-12-01 Published:2018-12-01
  • Contact: Shi Bin,E-mail:shibin@nju.edu.cn E-mail:shibin@nju.edu.cn

摘要: 随着工农业生产等领域对湿度的准确、实时监测要求越来越高,进一步创新湿度监测技术具有重要的实际意义. 基于干湿球湿度测量原理与光纤布拉格光栅(Fiber Bragg Grating,FBG)感温原理,提出了一种新型的FBG蒸发式湿度计,通过试验率定,研究了其在不同纱布套厚度下的感湿性能. 结果表明:FBG蒸发式湿度计在包有两层纱布套的情况下感湿性能最稳定,干湿球系数A平均值达到0.001116. 随后通过试验验证了其用于环境湿度监测的可行性. 开展了FBG蒸发式湿度计在不同湿度差下的阶跃响应试验研究,结果表明:FBG蒸发式湿度计具有良好的响应特性,在湿度差为20%RH~60%RH下,响应时间为26~50 s. FBG蒸发式湿度计的响应特性在其本质上不受所处环境湿度值的影响,在高湿环境下稳定性高. FBG蒸发式湿度计具有抗电磁干扰、精度高、误差小、响应时间短、高湿环境下性能稳定等突出优点,为现代化的湿度测量提供了一种新的手段.

关键词: 湿度测量, FBG, 传感器, 研 制, 响应特性

Abstract: With the needs of more accurate and real-time humidity monitoring during process of industrial and agricultural production,it becomes significant to develop new humidity measurement techniques. Based on the principle of wet and dry bulb humidity measurement and the theory of Fiber Bragg Grating(FBG)temperature sensing,a new type of FBG evaporative hygrometer is introduced in this study. The new device was calibrated in laboratory tests and its performance was also evaluated with different thickness of coated gauze. In addition,the feasibility of using the new hygrometer to monitor air humidity was verified through validation tests. The calibration results indicate that the hygrometer has the most stability when two layers of gauze are packed on the hygrometer,with the maximum A(the wet and dry bulb coefficient)of 0.001116. The validation tests show that FBG evaporative hygrometer has good response characteristics that has a time response of 26~50 s under conditions of 20%RH~60%RH humidity. FBG evaporative hygrometer response is not disturbed by ambient air humidity. Furthermore,FBG evaporative hygrometer has advantages of anti-electromagnetic interference,high precision,small error,stable performance under high humidity,which provides a new means for the modern humidity measurement.

Key words: humidity measurement, Fiber Bragg Grating, sensors, design and produce, response characteristics

中图分类号: 

  • TH837
[1] Teodosiu C,Hohota R,Rusaoun G,et al. Numerical prediction of indoor air humidity and its effect on indoor environment. Building and Environment,2003,38(5):655-664.
[2] Yeo T L,Eckstein D,McKinley B,et al. Demonstration of a fibre-optic sensing technique for the measurement of moisture absorption in concrete. Smart Materials and Structures,2006,15(2):N40-N45.
[3] Valipour M. Importance of solar radiation,temperature,relative humidity,and wind speed for calculation of reference evapotranspiration. Archives of Agronomy and Soil Science,2015,61(2):239-255.
[4] Bibi F,Guillaume C,Vena A,et al. Wheat gluten,a bio-polymer layer to monitor relative humidity in food packaging:Electric and Dielectric Characterization. Sensors and Actuators A Physical,2016,247:355-367.
[5] Barroca N,Borges L M,Velez F J,et al. Wireless sensor networks for temperature and humidity monitoring within concrete structures. Construction and Building Materials,2013,40:1156-1166.
[6] Yeo T L,Sun T,Grattan K T V. Fibre-optic sensor technologies for humidity and moisture measurement. Sensors and Actuators A:Physical,2008,144(2):280-295.
[7] 周怡妃,梁大开,曾 捷等. 基于PI湿敏薄膜的分布式光纤Bragg光栅湿度传感器. 光电子·激光,2011,22(11):1597-1601.(Zhou Y F,Liang D K,Zeng J,et al. Research on relative humidity sensors based on distributed optical fiber bragg grating coated with polyimide moisture sensitive film. Journal of Optoelectronics·Laser,2011,22(11):1597-1601.)
[8] 吴静红,姜洪涛,苏晶文等. 基于DFOS的苏州第四纪沉积层变形及地面沉降监测分析. 工程地质学报,2016,24(1):56-63.(Wu J H,Jiang H T,Su J W,et al. DFOS-based monitoring on quaternary sediments deformation and land subsidence in Suzhou,China. Journal of Engineering Geology,2016,24(1):56-63.)
[9] Cheng G,Shi B,Zhu H H,et al. A field study on distributed fiber optic deformation monitoring of overlying strata during coal mining. Journal of Civil Structural Health Monitoring,2015,5(5):553-562.
[10] Yan J F,Shi B,Zhu H H,et al. A quantitative monitoring technology for seepage in slopes using DTS. Engineering Geology,2015,186:100-104.
[11] 唐天国,陈春华,刘浩吾. 分布式光纤传感用于大坝基座裂缝监测. 传感技术学报,2007,20(10):2357-2360.(Tang T G,Chen C H,Liu H W. Application of distributed optical fiber sensors into crack monitoring of dam’s foundation. Chinese Journal of Sensors and Actuators,2007,20(10):2357-2360.)
[12] 刘德明,孙琪真. 分布式光纤传感技术及其应用. 激光与光电子学进展,2009,46(11):29-33.(Liu D M,Sun Q Z. Distributed optical fiber sensing technology and its applications. Laser & Optoelectronics Progress,,2009,46(11):29-33.)
[13] Zheng S J,Zhu Y N,Krishnaswamy S. Fiber humidity sensors with high sensitivity and selectivity based on interior nanofilm-coated photonic crystal fiber long-period gratings. Sensors and Actuators B:Chemical,2013,176:264-274.
[14] Li T,Dong X Y,Chan C C,et al. Humidity sensor based on a multimode-fiber taper coated with polyvinyl alcohol interacting with a fiber bragg grating. IEEE Sensors Journal,2012,12(6):2205-2208.
[15] Woyessa G,Fasano A,Markos C,et al. Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing. IEEE Pho-tonics Technology Letters,2017,29(7):575-578.
[16] Berruti G,Consales M,Giordano M,et al. Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber bragg gratings sensors. Sensors and Actuators B:Chemical,2013,177:94-102.
[17] Giaccari P,Limberger H G,Kronenberg P. Influence of humidity and temperature on polyimide-coated fiber Bragg gratings ∥ Bragg Gratings,Photosensitivity,and Poling in Glass Waveguides. Washington DC,USA:OSA Publishing,2001:BFB2.
[18] Kronenberg P,Rastogi P K,Giaccari P,et al. Relative humidity sensor with optical fiber Bragg gratings. Optics Letters,2002,27(16):1385-1387.
  [19] Yeo T L,Sun T,Grattan K T V,et al. Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing. Sensors and Actuators B:Chemical,2005,110(1):148-156.
[20] 向光华,忽满利,乔学光等. 基于聚酰亚胺材料的FBG湿度传感特性研究. 光电子·激光,2012,23(1):41-45.(Xiang G H,Hu M L,Qiao X G,et al. Study on the characteristics of FBG humidity sensors based on polyimide. Journal of Optoelectronics·Laser,2012,23(1):41-45.)
[21] Alwis L,Sun T,Grattan K V. Analysis of polyimide-coated optical fiber long-period grating-based relative humidity sensor. IEEE Sensors Journal,2013,13(2):767-771.
[22] Lin Y,Gong Y,Wu Y,et al. Polyimide-coated fiber bragg grating for relative humidity sensing. Photonic Sensors,2015,5(1):60-66.
[23] Woyessa G,Nielsen K,Stefani A,et al. Temperature insensitive hysteresis free highly sensitive polymer optical fiber bragg grating humidity sensor. Optics Express,2016,24(2):1206-1213.
[24] 柴 敬,刘 奇,张 渤等. 基于聚酰亚胺的FBG湿度传感特性及细观特征研究. 光电子·激光,2016,27(3):239-246.(Chai J,Liu Q,Zhang B,et al. Characterization and substructure morphology of a polyimide-coated FBG humidity sensor. Journal of Optoelectronics·Laser,2016,27(3):239-246.)
[25] 施纯峥. 基于宽谱光源的光纤布喇格光栅传感器解调技术的研究. 博士学位论文. 北京:清华大学,2004.(Shi C Z. Study on interrogation of fiber bragg grating sensors with a broadband source. Ph. D. Dissertation. Beijing:Tsinghua University,2004.)
[26] 钱同生. 湿度计算公式的简化计算方法 湿度计算公式的简化方法. 南京化工大学学报,1998,20(2):69-71.(Qian T S. Simplified formulae for atmospheric humidity. Journal of Nanjing University of Chemical Technology,1998,20(2):69-71.)
[27] 黄晓因,徐丽芬. 高温环境下相对湿度测量误差及干湿球系数计算. 气象科技,2005,33(4):367-369,372.(Huang X Y,Xu L F. Measuring error analysis of relative humidity and calculation of psychrometric coefficient at high temperature. Meteorological Science and Technology,2005,33(4):367-369,372.)
[28] 周庆福,吕国义,杨永军. 湿度传感器动态响应特性校准研究. 陶瓷学报,2008,29(3):290-292.(Zhou Q F,Lv G Y,Yang Y J. Preliminary exploration on calibration for dynamic response of humidity sensor. Journal of Ceramics,2008,29(3):290-292.)
[29] 王 洋,王晓蕾,李 萍等. 温度和风速对湿度传感器动态特性的影响. 气象科技,2012,40(6):910-913.(Wang Y,Wang X L,Li P,et al. Influence of temperature and wind velocity on dynamic characteristics of humidity sensor. Meteorological Science and Technology,2012,40(6):910-913.)
[1] 殷文正,姜卫东*,陶 金. 基于禁忌搜索算法的AUV动态路径规划策略[J]. 南京大学学报(自然科学版), 2017, 53(1): 144-.
[2]  胡 石12,李光辉123*,冯海林12. 基于Top­k(σ)的无线传感器网络异常数据检测算法[J]. 南京大学学报(自然科学版), 2016, 52(2): 261-.
[3] 马小燕1*,殷 杰2. 基于九轴传感器的可穿戴式微功耗实时震颤监测系统[J]. 南京大学学报(自然科学版), 2016, 52(2): 390-.
[4] 李霞*,赵冬雪. 基于多信道的簇结构水声传感器网络容量分析与研究[J]. 南京大学学报(自然科学版), 2015, 51(7): 21-.
[5] 殷文正1,刘胤祥1,2,姜卫东1*. 基于AUV运动控制的水下传感器网络部署策略[J]. 南京大学学报(自然科学版), 2015, 51(7): 116-.
[6] 刘鹍鹏1,2, 姜卫东1*. 基于感知因子的水下传感器节点覆盖模型研究[J]. 南京大学学报(自然科学版), 2015, 51(6): 1203-1209.
[7] 曹磊1,3,韩涛2,张婧2,沈航3,白光伟3. 无线多媒体传感器网络拥塞感知的流控制机制[J]. 南京大学学报(自然科学版), 2014, 50(2): 173-.
[8] 刘 群1,顾 金1,张足生2. 基于无线传感器网络的车辆分型算法[J]. 南京大学学报(自然科学版), 2013, 49(5): 655-663.
[9]  徐方迁1,王艳清1,王文2
.  基于声表面波反射延迟线无线传感器的理论分析与设计[J]. 南京大学学报(自然科学版), 2013, 49(1): 46-51.
[10]  周雷1,喻言2**,李志瑞2,王洁3,孙贞1,欧进萍4
.  海洋平台振动采集的超低频无线传感器设计*[J]. 南京大学学报(自然科学版), 2011, 47(4): 414-419.
[11]  宋明太, 周凤梅, 范 理, 张淑仪 ** .  ZnO/ 36?YX- LiTaO 3 结构的 Love 波免疫传感器灵敏度研究*

[J]. 南京大学学报(自然科学版), 2011, 47(2): 182-188.
[12]  吉林 1 , 丁华平 2 , 沈庆宏 2 ** .  基于无线传感器网络的桥梁结构健康监测*

[J]. 南京大学学报(自然科学版), 2011, 47(1): 19-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 林 銮,陆武萍,唐朝生,赵红崴,冷 挺,李胜杰. 基于计算机图像处理技术的松散砂性土微观结构定量分析方法[J]. 南京大学学报(自然科学版), 2018, 54(6): 1064 -1074 .
[2] 梅世嘉,施 斌,曹鼎峰,魏广庆,张 岩,郝 瑞. 基于AHFO方法的Green-Ampt模型K0取值试验研究[J]. 南京大学学报(自然科学版), 2018, 54(6): 1085 -1094 .
[3] 汪 勇,刘 瑾*,宋泽卓,白玉霞,王琼亚,祁长青,孙少锐. 高分子稳定剂加固河道边坡表层砂土室内试验研究[J]. 南京大学学报(自然科学版), 2018, 54(6): 1095 -1104 .
[4] 许 林,张 巍*,梁小龙,肖 瑞,曹剑秋. 岩土介质孔隙结构参数灰色关联度分析[J]. 南京大学学报(自然科学版), 2018, 54(6): 1105 -1113 .
[5] 卢 毅,于 军,龚绪龙,王宝军,魏广庆,季峻峰. 基于DFOS的连云港第四纪地层地面沉降监测分析[J]. 南京大学学报(自然科学版), 2018, 54(6): 1114 -1123 .
[6] 孙 玫,张 森,聂培尧,聂秀山. 基于朴素贝叶斯的网络查询日志session划分方法研究[J]. 南京大学学报(自然科学版), 2018, 54(6): 1132 -1140 .
[7] 胡 淼,王开军,李海超,陈黎飞. 模糊树节点的随机森林与异常点检测[J]. 南京大学学报(自然科学版), 2018, 54(6): 1141 -1151 .
[8] 洪思思,曹辰捷,王 喆*,李冬冬. 基于矩阵的AdaBoost多视角学习[J]. 南京大学学报(自然科学版), 2018, 54(6): 1152 -1160 .
[9] 魏 桐,童向荣. 基于加权启发式搜索的鲁棒性信任路径生成[J]. 南京大学学报(自然科学版), 2018, 54(6): 1161 -1170 .
[10] 周星星,张海平,吉根林. 具有时空特性的区域移动模式挖掘算法[J]. 南京大学学报(自然科学版), 2018, 54(6): 1171 -1182 .