南京大学学报(自然科学版) ›› 2018, Vol. 54 ›› Issue (6): 1114–1123.doi: 10.13232/j.cnki.jnju.2018.06.007

• 环境工程地质学专栏 • 上一篇    下一篇

基于DFOS的连云港第四纪地层地面沉降监测分析

卢 毅1, 2*,于 军,龚绪龙,王宝军2,魏广庆3,季峻峰2   

  1. 1.国土资源部地裂缝地质灾害重点实验室(江苏省地质调查研究院),南京,210049; 2.南京大学地球科学与工程学院,南京,210023;3.苏州南智传感科技有限公司,苏州,215123
  • 接受日期:2018-05-07 出版日期:2018-12-01 发布日期:2018-12-01
  • 通讯作者: 卢 毅, lynju@163.com E-mail:lynju@163.com
  • 基金资助:
    国土资源部公益性行业专项(201511055),江苏省自然科学基金青年基金(BK20151011)

Monitoring and analysis of quaternary strata subsidence in Lianyungang based on DFOS

Lu Yi1,2*,Yu Jun1,Gong Xulong1,Wang Baojun2,Wei Guangqing3,Ji Junfeng2   

  1. 1.Key Laboratory of Earth Fissures Geological Disaster,Ministry of Land and Resource, Geological Survey of Jiangsu Province,Nanjing,210049,China; 2.School of Earth Sciences and Engineering,Nanjing University,Nanjing,210023,China; 3.Suzhou NanZee Sensing Technology Co.,Ltd.,Suzhou,215123,China
  • Accepted:2018-05-07 Online:2018-12-01 Published:2018-12-01
  • Contact: Lu Yi, lynju@163.com E-mail:lynju@163.com

摘要: 地面沉降作为目前长三角地区危害最严重的地质灾害,对长三角地区的经济发展造成了十分严重的危害. 采用布里渊光时域反射技术(Brillouin Optical Time Domain Reflectometer,BOTDR)及准分布布拉格光纤光栅(Fiber Bragg Grating,FBG)等分布式监测技术(Distributed Fiber Optic Sensing,DFOS),利用连云港市徐圩新区污水处理厂内一个130 m的钻孔,通过分布式光缆对该地第四纪地层的地面沉降进行了为期两年的监测与分析. 主要的结果如下:目前该地区的主要沉降层为第一弱透水层;地层的沉降量与抽水含水层的孔隙水压力变化一致,且存在一定的滞后性;徐圩地区地面沉降的主要原因是与抽水含水层相邻的弱透水层的释水压缩,而不是抽水含水层的压缩变形;DFOS技术为进一步研究地面沉降的机理与变形特点提供了一种较为准确的监测方法.

关键词: 地面沉降, 分布式光纤监测, 第四纪地层, 现场试验

Abstract: As the most serious geological hazard in the Yangtze River Delta area,land subsidence has caused serious damage to the economic development of the Yangtze River Delta area. In this paper,the Quaternary land subsidence is long-term monitored by the Distributed Fiber Optic Sensing(DFOS)technology. The optical fibers based on the BOTDR(Brillouin Optical Time Domain Reflectometer) technology and the fiber grating sensors based on the FBG(Fiber Bragg Grating) technology are laid in a 130 m borehole drilled in Xuwei,Lianyungang city. The monitoring data collected in two years is analyzed. The main compaction occurs at the first aquitard. The deformation of stratum is consistent with the variation of pore water pressure of pumping aquifer. And there is a hysteresis between them. The main cause of ground subsidence in Xuwei is the compression of the aquitard adjacent to the pumping aquifer rather than the deformation of the pumping aquifer. DFOS technology provides a very advanced monitoring method for the study of the mechanism and deformation characteristics of ground subsidence.

Key words: land subsidence, distributed fiber optic monitoring, quaternary strata, field test

中图分类号: 

  • P642.26
[1] Ortega-Guerrero M A,Carrillo-Rivera J J. Land subsidence in urban environment ∥ Meyers R A. Encyclopedia of Sustainability Science and Technology. Springer New York,2012,8(2):100-375.
[2] Chen C X,Pei S P,Jiao J. Land subsidence caused by groundwater exploitation in Suzhou City,China. Hydrogeology Journal,2003,11(2):275-287.
[3] 刘欢欢,张有全,王荣等. 京津高铁北京段地面沉降监测及结果分析. 地球物理学报,2016,59(7):2424-2432.(Liu H H,Zhang Y Q,Wang R,et al. Monitoring and analysis of land subsidence along the Beijing-Tianjin high-speed railway(Beijing section). Chinese Journal of Geophysics,2016,59(7):2424-2432.)
[4] 刘长礼,王秀艳,侯宏冰等. 我国城市地质灾害及其风险防控对策. 中国地质灾害与防治学报,2013,24(S1):313-316.
[5] 郑铣鑫,武 强,侯艳声等. 城市地面沉降研究进展及其发展趋势. 地质论评,2002,48(6):612-618.(Zheng X X,Wu Q,Hou Y S,et al. Advances and trends in research on urban land subsidence. Geological Review,2002,48(6):612-618.)
[6] 李文运,崔亚莉,苏 晨等. 天津市地下水流-地面沉降耦合模型. 吉林大学学报(地球科学版),2012,42(3):805-813.(Li W Y,Cui Y L,Su C,et al. An integrated numerical groundwater and land subsidence model of Tianjin. Journal of Jilin University(Earth Science Edition),2012,42(3):805-813.)
[7] Phien-Wej N,Giao P H,Nutalaya P. Land subsidence in Bangkok,Thailand. Engineering Geology,2006,82(4):187-201.
[8] 刘 勇,黄海军,李培英等. 黄河三角洲深层地下水漏斗引发的地面沉降特征. 应用基础与工程科学学报,2014,22(5):896-908.(Liu Y,Huang H J,Li P Y,et al. Characteristics of land subsidence induced by deep groundwater funnel in the Yellow River Delta. Journal of Basic Science and Engineering,2014,22(5):896-908.)
[9] 骆祖江,黄小锐. 区域地下水开采与地面沉降控制三维全耦合数值模拟. 水动力学研究与进展,2009,24(5):566-574.(Luo Z J,Huang X R. Three-dimensional full coupling numerical simulation of groundwater exploitation and control of land-subsidence in region. Journal of Hydrodynamics,2009,24(5):566-574.)
[10] 孙 恒,岳建平. 基于建筑荷载的城市地面沉降数学模型研究. 测绘通报,2013(4):15-17.(Sun H,Yue J P. On mathematical model of urban land subsidence based on building load. Bulletin of Surveying and Mapping,2013(4):15-17.)
[11] Ovando-Shelley E,Ossa A,Romo M P. The sinking of Mexico City:Its effects on soil properties and seismic response. Soil Dynamics and Earthquake Engineering,2007,27(4):333-343.
[12] 王 兴,施 斌,魏广庆等. 土木与岩土工程监测新技术——BOFDA的性能与特点. 防灾减灾工程学报,2015,35(6):763-768.(Wang X,Shi B,Wei G Q,et al. A novel technique for civil and geotechnical engineering monitoring:performance and characteristics of BOFDA. Journal of Disaster Prevention and Mitigation Engineering,2015,35(6):763-768.)
[13] 曹鼎峰,施 斌,严珺凡等. BOFDA技术综述及用于岩土工程监测的可行性研究. 防灾减灾工程学报,2013,33(s1):132-137.(Cao D F,Shi B,Yan J F,et al. BOFDA technology overview and feasibility study for geotechnical engineering monitoring. Journal of Disaster Prevention and Mitigation Engineering,2013,33(s1):132-137.)
[14] 陈 池,柯贤金,蔡顺德等. 分布式光纤技术在锦屏一级水电站地质平硐边坡监测中的应用研究. 水利水电技术,2009,40(3):27-29.(Chen C,Ke X J,Cai S D,et al. Study on application of distributed optical fiber technique to monitoring slope structure of geological adit for Jinping Hydropower Station Ⅰ. Water Resources and Hydropower Engineering,2009,40(3):27-29.)
[15] Kihara M,Hiramatsu K,Shima M,et al. Distributed optical fiber strain sensor for detecting river embankment collapse. Ieice Transactions on Electronics,2002,E85-C(4):952-960.
[16] 李 科. 土体变形监测特种光纤传感技术研究. 硕士学位论文. 南京:南京大学,2008.
[17] Komatsu K,Fujihashi K,Okutsu M. Application of optical sensing technology to the civil engineering field with optical fiber strain measurement device(BOTDR) ∥ Proceedings of SPIE Volume 4920,Advanced Sensor Systems and Applications. Shanghai,China:SPIE,2002,4920:352-361.
[18] Ohno H,Naruse H,Kihara M,et al. Industrial applications of the BOTDR optical fiber strain sensor. Optical Fiber Technology,2001,7(1):45-64.
[19] Naruse H,Uchiyama Y,Kurashima T,et al. River levee change detection using distributed fiber optic strain sensor. Ieice Transactions on Electronics,2000,E83-C(3):462-467.
[20] 刘 薇,李 靖. 分布式光纤光栅在管道检测中的应用. 红 外,2008,29(7):37-39.(Liu W,Li J. Application of distributed fiber bragg grating in pipeline detection. Infrared,2008,29(7):37-39.)
[21] 黄民双,曾 励,陶宝祺等. 分布式光纤布里渊散射应变传感器参数计算. 航空学报,1999,20(2):137-140.(Huang M S,Zeng L,Tao B Q,et al. Parameter calculation of distributed optical fiber strain sensor based on brillouin scattering. Acta Aeronautica ET Astronautica Sinica,1999,20(2):137-140.)
[22] Sakairi Y,Uchiyama H,Li Z X,et al. System for measuring temperature and strain separately by BOTDR and OTDR ∥ Proceedings of SPIE Volume 4920,Advanced Sensor Systems and Applications. Shanghai,China:SPIE,2002,4920:274-285.
[23] 索文斌,施 斌,张 巍等. 基于BOTDR的分布式光纤传感器标定实验研究. 仪器仪表学报,2006,27(9):985-989.(Suo W B,Shi B,Zhang W,et al. Study on calibration of distributed optical fiber sensors based on BOTDR. Chinese Journal of Scientific Instrument,2006,27(9):985-989.)
[24] 李 川,张以谟,赵永贵等. 光纤光栅:原理、技术与传感应用. 北京:科学出版社,2005.(Li C,Zhang Y M,Zhao Y G,et al. Fiber grating:Principle,technology and sensing application. Beijing:Science Press,2005.)
[25] Kersey A D,Morey W W. Multiplexed Bragg grating fiber-laser strain sensor system with mode-locked interrogation. Electronics Letters,1993,29(1):112-114.
[26] Kersey A D. A review of recent developments in fiber optic sensor technology. Optical Fiber Technology,1996,2(3):291-317.
[27] Hill K O,Fujii Y,Johnson D C,et al. Potosensitivity in optical fiber waveguides:Application to reflection filter fabrication. Applied Physics Letters,1978,32(10):647-649.
[28] Hill K O,Malo B,Bilodeau F,et al. Bragg grattings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Applied Physics Letters,1993,62(10):1035-1037.
  [29] Hill K O,Meltz G. Fiber bragg grating technology fundamentals and overview. Journal of Lightwave Technology,1997,15(8):1263-1276.
[30] 信思金,梁 磊,左 军. 光纤光栅传感技术在重大工程结构诊断与监测中的应用. 河南科技大学学报(自然科学版),2005,26(3):52-56.(Xin S J,Liang L,Zuo J. Application of FBG sensing technology on diagnosis and monitoring in major engineering structure. Journal of Henan University of Science and Technology(Natural Science),2005,26(3):52-56.)
[1] 杨 蕴, 宋 健, 朱 琳, 吴剑锋, 王锦国. 基于KELM地面沉降替代模型的地下水多目标管理模型研究[J]. 南京大学学报(自然科学版), 2019, 55(3): 349-360.
[2] 董少春,种亚辉,胡 欢,黄璐璐. 基于时序InSAR的常州市2015-2018年地面沉降监测[J]. 南京大学学报(自然科学版), 2019, 55(3): 370-380.
[3] 曹 群,陈蓓蓓,宫辉力,周超凡,罗 勇,高明亮,王 旭,史 珉,赵笑笑,左俊杰. 基于SBAS和IPTA技术的京津冀地区地面沉降监测[J]. 南京大学学报(自然科学版), 2019, 55(3): 381-391.
[4] 吕海敏,沈水龙,严学新,史玉金,许烨霜. 上海地面沉降对轨道交通安全运营风险评估[J]. 南京大学学报(自然科学版), 2019, 55(3): 392-400.
[5] 徐成华,谈金忠,骆祖江,李 兆. 地铁盾构施工引发地面沉降三维流固全耦合数值模拟预测[J]. 南京大学学报(自然科学版), 2019, 55(3): 409-419.
[6] 叶 超,田 芳,罗 勇,王新惠,田苗壮,崔文君,王立发,雷坤超. 北京地面沉降控制区划及防控措施[J]. 南京大学学报(自然科学版), 2019, 55(3): 440-448.
[7] 严学新,杨天亮,林金鑫,黄鑫磊,王建秀. 超深基坑减压降水引发地面沉降的估算及其影响因素分析[J]. 南京大学学报(自然科学版), 2019, 55(3): 401-408.
[8] 杨建民,于佳卉,霍王文. 区域性地面沉降形状参数c1与c2间线性关系研究[J]. 南京大学学报(自然科学版), 2019, 55(3): 420-428.
[9] 毛 磊,张 岩,刘明遥,龚绪龙,于 军,叶淑君. 江苏沿海地区地面沉降约束下的地下水可采资源量评价[J]. 南京大学学报(自然科学版), 2019, 55(3): 429-439.
[10] 罗 跃,严学新,杨天亮,叶淑君,吴吉春. 上海陆域地区地下水采灌与地面沉降的时空特征[J]. 南京大学学报(自然科学版), 2019, 55(3): 449-457.
[11] 缪长健, 施斌, 郑兴, 王湛, 魏广庆. 海上超长PHC管桩BOFDA内力测试[J]. 南京大学学报(自然科学版), 2018, 54(6): 1057-1063.
[12]  杨 蕴1,朱 琳2*,林 锦3,王锦国1.  考虑地面沉降约束的地下水模拟优化管理模型[J]. 南京大学学报(自然科学版), 2016, 52(3): 470-478.
[13] 贺小桐1,叶淑君1*,于军2,吴吉春1,龚绪龙2. 基于固体颗粒速度场的三维地面沉降模拟[J]. 南京大学学报(自然科学版), 2015, 51(6): 1268-1278.
[14]  叶淑君 1 ** , 薛禹群 1 , 吴吉春 1 , 李勤奋 2 .  基于修正麦钦特模型的地面沉降模拟:以上海为例*

[J]. 南京大学学报(自然科学版), 2011, 47(3): 291-298.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 林 銮,陆武萍,唐朝生,赵红崴,冷 挺,李胜杰. 基于计算机图像处理技术的松散砂性土微观结构定量分析方法[J]. 南京大学学报(自然科学版), 2018, 54(6): 1064 -1074 .
[2] 段新春,施 斌,孙梦雅,魏广庆,顾 凯,冯晨曦. FBG蒸发式湿度计研制及其响应特性研究[J]. 南京大学学报(自然科学版), 2018, 54(6): 1075 -1084 .
[3] 梅世嘉,施 斌,曹鼎峰,魏广庆,张 岩,郝 瑞. 基于AHFO方法的Green-Ampt模型K0取值试验研究[J]. 南京大学学报(自然科学版), 2018, 54(6): 1085 -1094 .
[4] 汪 勇,刘 瑾*,宋泽卓,白玉霞,王琼亚,祁长青,孙少锐. 高分子稳定剂加固河道边坡表层砂土室内试验研究[J]. 南京大学学报(自然科学版), 2018, 54(6): 1095 -1104 .
[5] 许 林,张 巍*,梁小龙,肖 瑞,曹剑秋. 岩土介质孔隙结构参数灰色关联度分析[J]. 南京大学学报(自然科学版), 2018, 54(6): 1105 -1113 .
[6] 孙 玫,张 森,聂培尧,聂秀山. 基于朴素贝叶斯的网络查询日志session划分方法研究[J]. 南京大学学报(自然科学版), 2018, 54(6): 1132 -1140 .
[7] 胡 淼,王开军,李海超,陈黎飞. 模糊树节点的随机森林与异常点检测[J]. 南京大学学报(自然科学版), 2018, 54(6): 1141 -1151 .
[8] 洪思思,曹辰捷,王 喆*,李冬冬. 基于矩阵的AdaBoost多视角学习[J]. 南京大学学报(自然科学版), 2018, 54(6): 1152 -1160 .
[9] 魏 桐,童向荣. 基于加权启发式搜索的鲁棒性信任路径生成[J]. 南京大学学报(自然科学版), 2018, 54(6): 1161 -1170 .
[10] 周星星,张海平,吉根林. 具有时空特性的区域移动模式挖掘算法[J]. 南京大学学报(自然科学版), 2018, 54(6): 1171 -1182 .