南京大学学报(自然科学版) ›› 2018, Vol. 54 ›› Issue (6): 1064–1074.doi: 10.13232/j.cnki.jnju.2018.06.002

• 环境工程地质学专栏 • 上一篇    下一篇

基于计算机图像处理技术的松散砂性土微观结构定量分析方法

林 銮1,陆武萍2,唐朝生1*,赵红崴2,冷 挺1,李胜杰1   

  1. 1.南京大学地球科学与工程学院,南京,210023; 2.中国电力工程顾问集团华东电力设计院有限公司,上海,200063
  • 接受日期:2018-05-07 出版日期:2018-12-01 发布日期:2018-12-01
  • 通讯作者: 唐朝生,E-mail:tangchaosheng@nju.edu.cn E-mail:tangchaosheng@nju.edu.cn
  • 基金资助:
    国家自然科学基金(41572246,41772280),优秀青年科学基金(41322019),国家自然科学基金重点项目(41230636),江苏省自然科学基金(BK20171228,BK20170394),中央高校基本科研业务费专项资金(2016-2018)

Microstructure quantification method for loose sandy soil based on image processing technique

Lin Luan1,Lu Wuping2,Tang Chaosheng1*,Zhao Hongwei2,Leng Ting1,Li Shengjie1   

  • Accepted:2018-05-07 Online:2018-12-01 Published:2018-12-01
  • Contact: Tang chaosheng, E-mail:tangchaosheng@nju.edu.cn E-mail:tangchaosheng@nju.edu.cn

摘要: 土体微观结构是土体宏观力学机制的反映,深入研究土体微观结构对正确评价土体工程性质具有重要的指导意义. 针对松散砂性土的微观结构量化研究中存在的难题,提出了一整套样品制备方法和试验方法,基于数字图像处理技术,对土样的扫描电子显微镜图像(scanning electron microscope,SEM)进行了定量分析,并通过自主开发的程序实现了土样微观结构量化指标的快速获取和全自动处理. 采用该方法能对松散的砂性土制备出符合扫描电镜观测要求并同时保持原始结构不受扰动的试样,开发的程序能对土样的SEM图像进行去除多余信息、二值化、去噪、参数统计等预处理步骤,快速获取颗粒个数、面积、形态比、表观孔隙率、分形维数等微观结构量化指标. 借助统计学方法,对一些关键量化指标的分布特征进行了分析和探讨. 研究结果表明,计算机图像处理技术可以高效识别土体的颗粒和孔隙形态,进行土体微观结构参数的精确提取,从而为土体微观结构的定量分析提供了有效的途径.

关键词: SEM图像, 砂性土, 定量分析, 数字图像处理, 微观结构, 概率密度函数

Abstract: The microstructure of soil is a reflection of the macro-mechanics mechanism. In-depth study of the microstructure of soil has important guiding significance on evaluating the engineering properties of soil correctly. For the problems existing in the quantitative study of the microstructure of loose sandy soil,a set of sample preparation methods and test methods were proposed in this work. Based on digital image processing technique,the SEM images of soil samples were quantitatively analyzed,and through the independently developed program,the rapid acquisition and automatic processing of quantitative indexes of soil microstructures have been realized. The method can be used to make loose sandy soil meet the scanning electron microscope observation requirements while keeping the original structure undisturbed. The developed program can perform preprocessing steps such as removal of redundant information,binarization,denoising,and parameter statistics of the SEM images of soil samples,and quickly obtain the microstructure quantitative indexes such as the number of particles,area,morphology ratio,apparent porosity,fractal dimension etc. By means of statistics,the distribution characteristics of some key quantitative indicators are analyzed and discussed. The results show that the computer image processing technique can effectively identify the particle and pore morphology of the soil,and accurately extract the microstructure parameters of the soil,thus providing an effective way for the quantitative analysis of the soil microstructure.

Key words: SEM image, sandy soil, quantitative analysis, digital image processing, microstructure, probability density function

中图分类号: 

  • TU411
[1] 沈珠江. 土体结构性的数学模型——21世纪土力学的核心问题. 岩土工程学报,1996,18(1):95-97.
[2] 唐朝生,施 斌,王宝军. 基于SEM土体微观结构研究中的影响因素分析. 岩土工程学报,2008,30(4):560-565.(Tang C S,Shi B,Wang B J. Factors affecting analysis of soil microstructure using SEM. Chinese Journal of Geotechnical Engineering,2008,30(4):560-565.)
[3] Calero J,Delgado A R,Delgado B G,et al. SEM image analysis in the study of a soil chronosequence on fluvial terraces of the middle Guadalquivir(Southern Spain). European Journal of Soil Science,2009,60(3):465-480.
[4] Obara B,KoAzˇuAsˇníková A. Utilisation of the image analysis method for the detection of the morphological anisotropy of calcite grains in marble. Computational Geosciences,2007,11(4):275-281.
  [5] 施 斌. 粘性土微观结构研究回顾与展望. 工程地质学报,1996,4(1):39-44.(Shi B. Review and prospect on the microstructure of clayey soil. Journal of Engineering Geology,1996,4(1):39-44)
[6] 周萃英. 土体微观结构研究与土力学的发展方向——若干进展与思考. 地球科学-中国地质大学学报,2000,25(2):215-220.(Zhou C Y. Research into soil mass microstructure and some progresses on soil mechanics. Earth Science-Journal of China University of Geosciences,2000,25(2):215-220.)
[7] Brown G. X-ray identification and crystal structures of clay minerals. London:Mineralogical Society,1961,43(2):8-14
[8] 张华杰,孙 秋,胡 昕等. 岩土微结构试验研究综述. 土工基础,2008,22(4):49-52.(Zhang H J,Sun Q,Hu Xin,et al. Summarizing study on the methods of testing microstructure of geomaterials. Soil Engineering and Foundation,2008,22(4):49-52.)
[9] 魏家有,高书存,兰孝龙. 土微观结构的研究综述. 林业科技情报,2010,42(3):120-123.(Wei J Y,Gao S C,Lan X L. Summary research of soil micromechanism. Forestry Science and Technology Information,2010,42(3):120-123)
[10] 吴义祥. 工程粘性土微观结构的定量评价. 中国地质科学院院报,1991,12(2):143-151.(Wu Y X. Quantitative approach on micro-structure of engineering clay. Bulletin of the Chinese Academy of Geological Sciences,1991,12(2):143-151.)
[11] 施 斌. 粘性土微观结构定向性的定量研究. 地质学报,1997,71(1):36-44.(Shi B. Quantitative research on the orientation of microstructures of clayey soil. Acta Geologica Sinica,1997,71(1):36-44.)
[12] 王 清,王凤艳,肖树芳. 土微观结构特征的定量研究及其在工程中的应用. 成都理工大学学报,2001,28(2):148-153.(Wang Q,Wang F Y,Xiao S F. A quantitative study of the microstructure characteristics of soil and its application to the engineering. Journal of Chengdu University of Technology,2001,28(2):148-153.)
[13] 何 俊,施建勇. 膨润土微观结构SEM观察中的表观孔隙率. 河海大学学报(自然科学版),2007,35(2):220-224.(He J,Shi J Y. Apparent porosity in SEM observation of microstructure of bentonite. Journal of Hohai University(Natural Sciences),2007,35(2):220-224.)
[14] 张礼中,胡瑞林,李向全等. 土体微观结构定量分析系统及应用. 地质科技情报, 2008, 27(1):108-112.(Zhang L Z,Hu R L,Li X Q,et al. Soil microstructure quantitative analysis system and its application. Geological Science and Technology Information,2008,27(1):108-112.)
[15] 王宝军,施 斌,蔡 奕等. 基于GIS的黏性土SEM图像三维可视化与孔隙度计算. 岩土力学,2008,29(1):251-255.(Wang B J,Shi B,Cai Y,et al. 3D visualization and porosity computation of clay soil SEM image by GIS. Rock and Soil Mechanics,2008,29(1):251-255.)
[16] Prakongkep N,Suddhiprakarn A,Kheoruenromne I,et al. SEM image analysis for characterization of sand grains in Thai paddy soils. Geoderma,2010,156(1-2):20-31.
[17] 张 瑞,张小珑,汤 辉等. 土体SEM图像定量分析系统及应用. 江西师范大学学报(自然科学版),2011,35(2):165-169.(Zhang R,Zhang X L,Tang H,et al. The soil SEM quantitative image analysis system and its application. Journal of Jiangxi Normal University(Natural Science),2011,35(2):165-169.)
[18] 樊成意,梁收运. 土体SEM图像处理中阈值的选取 ∥ 第九届全国工程地质大会论文集. 青岛,中国:工程地质学报,2012.
[19] Delage P. Microstructure Features in the Behaviour of Engineered Barriers for Nuclear Waste Disposal ∥ Schanz T. Experimental Unsaturated Soil Mechanics. Springer Berlin Heidelberg,2007:11-32.
[20] 唐朝生,施 斌,刘 春等. 黏性土在不同温度下干缩裂缝的发展规律及形态学定量分析. 岩土工程学报,2007,29(5):743-749.(Tang C S,Shi B,Liu C,et al. Developing law and morphological analysis of shrinkage cracks of clayey soil under different temperatures. Chinese Journal of Geotechnical Engineering,2007,29(5):743-749.)
[21] 唐朝生,王德银,施 斌等. 土体干缩裂隙网络定量分析. 岩土工程学报,2013,35(12):2298-2305.(Tang C S,Wang D Y,Shi B,et al. Quantitative analysis of soil desiccation crack network. Chinese Journal of Geotechnical Engineering,2013,35(12):2298-2305.)
[22] 李 燕,金振奎,金 婷等. 岩浆岩砾石磨圆度地质意义的研究. 沉积学报,2014,32(2):189-197.(Li Y,Jin Z K,Jin T,et al. Geological significance of magmatic gravel roundness. Acta Sedimentologica Sinica,2014,32(2):189-197.)
[23] 刘熙媛,窦远明,闫澍旺等. 基于分形理论的土体微观结构研究. 建筑科学,2005,21(5):21-25,10.(Liu X Y,Dou Y M,Yan S W,et al. Study on microstructure of soil with fractal theory. Building Science,2005,21(5):21-25,10.)
[24] 王宝军,施 斌,唐朝生. 基于GIS实现黏性土颗粒形态的三维分形研究. 岩土工程学报,2007,29(2):309-312.(Wang B J,Shi B,Tang C S. Study on 3D fractal dimension of clayey soil by use of GIS. Chinese Journal of Geotechnical Engineering,2007,29(2):309-312.)
[25] Moore C A,Donaldson C F. Quantifying soil microstructure using fractals. Géotechnique,2015,45(1):105-116.
[26] 许 丹,陈瑞生,李 慧等. 基于孔内影像的岩石节理粗糙度特征研究. 工程地质学报,2015,23(5):918-923.(Xu D,Chen R S,Li H,et al. Study for roughness of rock joints in fractal research based on panoramic borehole images. Journal of Engineering Geology,2015,23(5):918-923.)
[27] 杨书燕. 高液限粘土微结构分析与强度机理的研究. 硕士学位论文. 天津:河北工业大学,2003.(Yang S Y. Micro structural analysis and strength study about high liquid limit clay. Master Dissertation. Tianjin:Hebei Technology University,2003.)
[1]   胡振东1·2,尹荣2,武雅琴2,张治2,李明2,贾辉2,许林2,李宁1**
.  多不饱和脂肪酸不同组分抑制肺腺癌干细胞作用研究*[J]. 南京大学学报(自然科学版), 2013, 49(1): 116-122.
[2]  潘君屹,丁俊英**,倪培*.  Na2CO3 - H2O体系人工流体包裹体中
CO32-离子的显微拉曼光谱研究*
[J]. 南京大学学报(自然科学版), 2012, 48(3): 328-335.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段新春,施 斌,孙梦雅,魏广庆,顾 凯,冯晨曦. FBG蒸发式湿度计研制及其响应特性研究[J]. 南京大学学报(自然科学版), 2018, 54(6): 1075 -1084 .
[2] 梅世嘉,施 斌,曹鼎峰,魏广庆,张 岩,郝 瑞. 基于AHFO方法的Green-Ampt模型K0取值试验研究[J]. 南京大学学报(自然科学版), 2018, 54(6): 1085 -1094 .
[3] 卢 毅,于 军,龚绪龙,王宝军,魏广庆,季峻峰. 基于DFOS的连云港第四纪地层地面沉降监测分析[J]. 南京大学学报(自然科学版), 2018, 54(6): 1114 -1123 .
[4] 胡 淼,王开军,李海超,陈黎飞. 模糊树节点的随机森林与异常点检测[J]. 南京大学学报(自然科学版), 2018, 54(6): 1141 -1151 .
[5] 洪思思,曹辰捷,王 喆*,李冬冬. 基于矩阵的AdaBoost多视角学习[J]. 南京大学学报(自然科学版), 2018, 54(6): 1152 -1160 .
[6] 魏 桐,童向荣. 基于加权启发式搜索的鲁棒性信任路径生成[J]. 南京大学学报(自然科学版), 2018, 54(6): 1161 -1170 .
[7] 秦 娅, 申国伟, 赵文波, 陈艳平. 基于深度神经网络的网络安全实体识别方法[J]. 南京大学学报(自然科学版), 2019, 55(1): 29 -40 .
[8] 马宏亮, 万建武, 王洪元. 一种嵌入样本流形结构与标记相关性的多标记降维算法[J]. 南京大学学报(自然科学版), 2019, 55(1): 92 -101 .
[9] 陆慎涛, 葛洪伟, 周 竞. 自动确定聚类中心的移动时间势能聚类算法[J]. 南京大学学报(自然科学版), 2019, 55(1): 143 -153 .
[10] 仲昭朝, 邹 婷, 唐惠炜, 庄 重, 张 臻. 铜胁迫对蚕豆根尖细胞凋亡及线粒体功能的影响[J]. 南京大学学报(自然科学版), 2019, 55(1): 154 -160 .