南京大学学报(自然科学版) ›› 2018, Vol. 54 ›› Issue (6): 1085–1094.doi: 10.13232/j.cnki.jnju.2018.06.004

• 环境工程地质学专栏 • 上一篇    下一篇

基于AHFO方法的Green-Ampt模型K0取值试验研究

梅世嘉,施 斌*,曹鼎峰,魏广庆2,张 岩,郝 瑞   

  1. 1.南京大学地球科学与工程学院,南京,210023;2.苏州南智传感科技有限公司,苏州,215123
  • 接受日期:2018-05-07 出版日期:2018-12-01 发布日期:2018-12-01
  • 通讯作者: 施 斌,E-mail:shibin@nju.edu.cn E-mail:shibin@nju.edu.cn
  • 基金资助:
    国家重大科研仪器研制项目(41427801),国家自然科学基金重点项目(41230636)

An experimental study on the value of K0 in Green-Ampt model based on AHFO technology

Mei Shijia1,Shi Bin1*,Cao Dingfeng1,Wei Guangqing2,Zhang Yan1,Hao Rui1   

  1. 1.School of Earth Science and Engineering,Nanjing University,Nanjing,210023,China; 2.Suzhou NanZee Sensing Co.,Ltd,Suzhou,215123,China
  • Accepted:2018-05-07 Online:2018-12-01 Published:2018-12-01
  • Contact: Shi Bin,E-mail:shibin@nju.edu.cn E-mail:shibin@nju.edu.cn

摘要: 利用Van Genuchten经验函数拟合土水特征曲线,可获取反应土壤物理特性的参数m和n,求得体积含水率θ下的非饱和导水率Kθ,再利用Kθ代替饱和导水率K0,可获得Green-Apmt的修正模型. 过去受测试手段的限制,这类修正方法还未经过试验精确验证;传统的点式测量手段可通过数个点的体积含水率数据推测整个土壤的体积含水率剖面和湿润锋的位置,引起的误差常常比较大. 利用分布式的主动加热型的体积含水率光纤测试方法(actively heated fiber optic method,AHFO),定位精度可达2.5 cm;设计了模型桶中砂土垂直向上入渗的渗流试验,测试了试验过程中土壤体积含水率剖面,并采用AHFO技术实时定位湿润锋的位置,大大提高了湿润锋定位准确性. 基于实测的体积含水率剖面及湿润锋位置,对K0修正前后Green-Apmt模型的准确性进行了测试. 结果表明:(1)非饱和土的渗透系数Kθ远小于饱和土的渗透系数K0,其大小可依据土壤特征曲线和AHFO法测得的土壤体积含水率确定,本次试验修正系数约为0.1;(2)湿润锋垂向运移距离与时间符合修改K0后的Green-Apmt模型;(3)AHFO法具有连续性和精确性的优点,可以作为评价土壤湿润过程的有效测试手段.

关键词: 非饱和土渗透系数, AHFO技术, 概化湿润锋, Green-Ampt模型, Van Genuchten经验函数

Abstract: The soil-water characteristic curve is studied using Van Genuchten expirical function to obtain the parameters m and n. And the saturation hydraulic conductivity in the Green-Apmt model was instead by unsaturated hydraulic conductivity under the soil moisture content. This type of correction method,limited by the test technology,has not yet been accurately measured experimentally in the past. It is not reliable to use moisture data from several points to infer the moisture content of the soil and the position of the wetting front by the point-based measurement. In this paper,a distributed active heated moisture content determination technology(AHFO technology with a positioning accuracy of 2.5 cm) was used to design the seepage test of vertical upward infiltration of sand in the model barrel. The soil moisture profile during the test was tested. The position of the wet front is positioned in real time through this technology,which greatly improves the accuracy of the location of the wet front. Based on this measured soil moisture content profile and wet front position,the accuracy of the Green-Apmt model correction was tested. The test results show that:(1)The permeability coefficient of unsaturated soil is far less than that of saturated soil,and its size can be based on The soil characteristic curve and the soil moisture content measured by the AHFO method are determined. The correction coefficient of this experiment is about 0.1;(2)The vertical migration distance and time of the wet front are in accordance with the modified Green-Apmt model,and the AHFO method has continuity. The advantages of precision and accuracy can be used as an effective tool for estimating soil moisture patterns.

Key words: hydraulic conductivity, the AHFO method, generalized water front, Green-Ampt model, Van Genuchten expirical function

中图分类号: 

  • TH764
[1] 梁爱民. 非饱和土壤渗透特性及饱和入渗机理试验研究. 博士学位论文. 大连:大连理工大学,2008.(Liang A M. Experimental study on permeability of unsaturated soil and mechanism of saturation infiltration. Ph. D. Dissertation. Dalian:Dalian University of Technology,2008.)
[2] Kostiakov A N. On the dynamics of the coefficient of water percolation in soils and on the necessity of studying it from a dynamic point of view for purposes of amelioration. Soil Science,1932,97(1):17-21.
[3] Horton R E. An approach towards a physical interpretation of infiltration capacity. Soil Science Society of America Journal,1941,5(C):399-417.
[4] Philip J R. The theory of infiltration:1,the infiltration equation and its solution. Soil Science,1957,83:345-357.
[5] Green W H,Ampt G. Studies on soil physics,1:the flow of air and water through soils. Journal of Agriculture Science,1911,4:1-24.
[6] Holtan H N. A Concept for Infiltration Estimates in Watershed Engineering. Aiche Journal,1961,39(30):41-45.
[7] Mein G,Larson C L. Modeling infiltration during a steady rain. Water Resources Research,1973,9(2):384-394.
[8] Moore I D,Larson C L,Slack D C,et al. Modeling infiltration:A measurable parameter approach. Journal of Agricultural Engineering Research,1981,26(1):21-32.
[9] Chu S T. Infiltration during an unsteady rain. Water Resources Research,1978,14(3):461-466.
[10] Fredlund D G,Xing A Q,Huang S Y. Predicting the permeability function for unsaturated soils using the soil-water characteristic curve. Canadian Geotechnical Journal,1994,31(3):533-546.
[11] 孙大松,刘 鹏,夏小和等. 非饱和土的渗透系数. 水利学报,2004(3):71-75.(Sun D S,Liu P,Xia X H,et al. Permeability coefficient of unsaturated soils. Journal of Hydraulic Engineering,2004(3):71-75.)
[12] Van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America,1980,44:892-898.
[13] Bouwer H. Rapid field measurement of air entry value and hydraulic conductivity of soil as significant parameters in flow system analysis. Water Resources Research,1966,2(4):729-738.
[14] 吕 特,张 洁,薛建峰等. Green-Ampt模型渗透系数取值方法研究. 岩土力学,2015,36(S1):341-345.(Lü T,Zhang J,Xue J F,et al. Determining permeability coefficient of Green-Ampt model for infiltration analysis. Rock and Soil Mechanics,2015,36(S1):341-345.)
[15] Van Genuchten M T,Nielsen D R. On describing and predicting the hydraulic properties of unsaturated soils. Annales Geophysicae,1985,3(5):615-628.
[16] 邵明安,王全九,黄明斌. 土壤物理学. 北京,高等教育出版社,2006,11.(Shao M A,Wang Q J,Huang M B. Soil physics. Beijing:Higher Education Press,2006,11.)
[17] Sourbeer J J,Loheide II S P. Obstacles to long-term soil moisture monitoring with heated distributed temperature sensing. Hydrological Processes,2016,30(7):1017-1035.
[18] Striegl A M,Loheide II S P. Heated distributed temperature sensing for field scale soil moisture monitoring. Ground Water,2012,50(3):340-347.
[19] 曹鼎峰,施 斌,严珺凡等. 基于C-DTS的土壤含水率分布式测定方法研究. 岩土工程学报,2014,36(5):910-915.(Cao D F,Shi B,Yan J F,et al. Distributed method for measuring moisture content of soils based on C-DTS. Chinese Journal of Geotechnical Engineering,2014,36(5):910-915.)
[20] 张 平,王 聪,谢长青等. 关于非饱和渗透理论中的几项基本问题的剖析. 沈阳大学学报(自然科学版),2014,26(5):386-390.(Zhang P,Wang C,Xie C Q,et al. Basic issues in unsaturated hydraulic theory. Journal of Shenyang University(Natural Science),2014,26(5):386-390.)
[21] 李 科,杨 飞,陈峰华等. OTDR原理及其应用. 山西科技,2010,25(2):46-47,51.(Li K,Yang F,Chen F H. Principle and application of OTDR. Shanxi Science and Technology,2010,25(2):46-47,51.)
[22] 张 昭,刘奉银,张国平等. 土在全含水率范围内持水及非饱和渗透特性的模型描述. 岩土工程学报,2014,36(11):2069-2077.(Zhang Z,Liu F Y,Zhang G P. Models for water retention and unsaturated permeability in full range of water content. Chinese Journal of Geotechnical Engineering,2014,36(11):2069-2077.)
[23] 白福青,刘斯宏,袁 骄等. 滤纸法测定南阳中膨胀土土水特征曲线试验研究. 岩土工程学报,2011,33(6):928-933.(Bai F Q,Liu S H,Yuan J,et al. Measurement of SWCC of Nanyang expansive soil using the filter paper method. Chinese Journal of Geotechnical Engineering,2014,33(6):928-933.)
[24] Marcel G,Van Genuchten M T. A modified Mualem-Van Genuchten formulation for improved description of the hydraulic conductivity near saturation. Vadose Zone Journal,2005,5(1):27-34.
[25] Mualem Y. Hydraulic conductivity of soil:prediction and formulas ∥ Methods of Soil Analysis. American Socienty of Agronomy,Madison,USA,1986:799-823.
 
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 林 銮,陆武萍,唐朝生,赵红崴,冷 挺,李胜杰. 基于计算机图像处理技术的松散砂性土微观结构定量分析方法[J]. 南京大学学报(自然科学版), 2018, 54(6): 1064 -1074 .
[2] 段新春,施 斌,孙梦雅,魏广庆,顾 凯,冯晨曦. FBG蒸发式湿度计研制及其响应特性研究[J]. 南京大学学报(自然科学版), 2018, 54(6): 1075 -1084 .
[3] 许 林,张 巍*,梁小龙,肖 瑞,曹剑秋. 岩土介质孔隙结构参数灰色关联度分析[J]. 南京大学学报(自然科学版), 2018, 54(6): 1105 -1113 .
[4] 卢 毅,于 军,龚绪龙,王宝军,魏广庆,季峻峰. 基于DFOS的连云港第四纪地层地面沉降监测分析[J]. 南京大学学报(自然科学版), 2018, 54(6): 1114 -1123 .
[5] 胡 淼,王开军,李海超,陈黎飞. 模糊树节点的随机森林与异常点检测[J]. 南京大学学报(自然科学版), 2018, 54(6): 1141 -1151 .
[6] 洪思思,曹辰捷,王 喆*,李冬冬. 基于矩阵的AdaBoost多视角学习[J]. 南京大学学报(自然科学版), 2018, 54(6): 1152 -1160 .
[7] 魏 桐,童向荣. 基于加权启发式搜索的鲁棒性信任路径生成[J]. 南京大学学报(自然科学版), 2018, 54(6): 1161 -1170 .
[8] 秦 娅, 申国伟, 赵文波, 陈艳平. 基于深度神经网络的网络安全实体识别方法[J]. 南京大学学报(自然科学版), 2019, 55(1): 29 -40 .
[9] 胡 太, 杨 明. 结合目标检测的小目标语义分割算法[J]. 南京大学学报(自然科学版), 2019, 55(1): 73 -84 .
[10] 严云洋, 瞿学新, 朱全银, 李 翔, 赵 阳. 基于离群点检测的分类结果置信度的度量方法[J]. 南京大学学报(自然科学版), 2019, 55(1): 102 -109 .