南京大学学报(自然科学版) ›› 2019, Vol. 55 ›› Issue (3): 381–391.doi: 10.13232/j.cnki.jnju.2019.03.005

• 地面沉降 • 上一篇    下一篇

基于SBAS和IPTA技术的京津冀地区地面沉降监测

曹 群1,2,5,陈蓓蓓1,2,3*,宫辉力1,2,3,周超凡1,2,3,4,罗 勇6,高明亮1,2,3,4,王 旭1,2,3,史 珉1,2,5,赵笑笑1,2,5,左俊杰1,2,5   

  1. 1. 城市环境过程与数字模拟国家重点实验室培育基地,北京,100048; 2.三维信息获取与应用教育部重点实验室,北京,100048; 3.首都师范大学资源环境与旅游学院,北京,100048; 4.北京市成像技术高精尖创新中心,首都师范大学,北京,100048; 5.首都师范大学地球空间信息科学与技术国际化示范学院,北京,100048; 6.北京市水文地质工程地质大队,北京,100195
  • 收稿日期:2019-02-25 出版日期:2019-06-01 发布日期:2019-05-31
  • 通讯作者: 陈蓓蓓 E-mail:6183@cnu.edu.cn
  • 基金资助:
    国家自然科学基金(41771455/D010702),北京卓青计划,北京市自然科学基金(8182013),北京市青年拔尖人才培育计划,国家自然科学基金重点项目(41130744/D0107)

Monitoring of land subsidence in Beijing-Tianjin-Hebei Urban by combination of SBAS and IPTA

Cao Qun1,2,5,Chen Beibei1,2,3*,Gong Huili1,2,3,Zhou Chaofan1,2,3,4,Luo Yong6,Gao Mingliang1,2,3,4,Wang Xu1,2,3,Shi Min1,2,5,Zhao Xiaoxiao1,2,5,Zuo Junjie1,2,5   

  1. 1. Base of the State Key Laboratory of Urban Environmental Process and Digital Modeling,Capital Normal University,Beijing,100048,China; 2. 3D Information Acquisition and Application,Ministry of Education,CapitalNormal University,Beijing,100048,China; 3.College of Resources Environment and Tourism Capital Normal University,Beijing,100048,China; 4.Beijing Advanced Innovation Center for Imaging Technology,Capital Normal University,Beijing 100048,China; 5.College of Geospatial Information Science and Technology,Capital Normal University,Beijing 100048,China; 6.Beijing Institute of Hydrogeology and Engineering Geology,Beijing,100195,China
  • Received:2019-02-25 Online:2019-06-01 Published:2019-05-31
  • Contact: Chen Beibei E-mail:6183@cnu.edu.cn

摘要: 京津冀位于华北平原北部地区,地下水的长期超量开采,造成了严重的区域地面沉降,对京津冀区域进行大范围地表形变监测已经成为一个值得关注的问题. 基于相邻条带的RADARSAT-2数据,结合小基线集干涉测量技术和干涉点目标分析技术,获取京津冀地区2012-2016年地面沉降场时序信息. 基于监测结果对研究区地面沉降发育情况进行初步探讨,并对沉降漏斗的时空演化特征进行分析. 研究发现,京津冀地区发生地面沉降的区域较多,地面沉降不均匀性特征明显,地面沉降发育最严重的地区位于北京金盏一带,最大沉降速率达到130 mm·a-1;在多个沉降漏斗中,北京金盏沉降漏斗、天津王庆坨沉降漏斗发育最为严重,累计沉降量分别达到661 mm,658 mm. 衡水市阜城县、景县沉降漏斗扩张趋势最为剧烈,累计沉降量大于200 mm的面积达到1494 km2.

关键词: 地面沉降, 京津冀地区, 小基线集干涉测量技术, 干涉点目标分析技术, 时空演化特征

Abstract: Beijing-Tianjin-Hebei Urban is located in the northern part of the North China Plain,where long-term overexploitation of groundwater has caused serious regional land subsidence problems. Monitoring and analysis of land subsidence in the area of Beijing-Tianjin-Hebei Urban has become a serious issue. This paper is based on RADARSAT-2 data with adjacent frames in the same track,temporal information of land subsidence in Beijing-Tianjin-Hebei Urban from 2012 to 2016 obtained through small baseline subsets InSAR(Interferometric Synthetic Aperture Radar) and interferometric point target analysis. Based on the monitoring results,the development of land subsidence is preliminarily discussed and the temporal and spatial evolution characteristics of subsidence funnels are also analyzed. It is found that there are many areas appearance of land subsidence phenomena in Beijing-Tianjin-Hebei Urban,and the land subsidence is uneven. The most developed area of land subsidence is located in Jinzhan,Beijing,with a maximum subsidence rate of 130 mm·a-1. Among many subsidence funnels,Beijing subsidence funnel and Tianjin subsidence funnel developed most dramatically,with cumulative subsidence reaching 661 mm and 668 mm,respectively. The expansion of Fucheng subsidence funnel and Jingxian subsidence funnel in the city of Hengshui is the most dramatic with cumulated subsidence of more than 200 mm over an area of 1494 km2.

Key words: land subsidence, Beijing-Tianjin-Hebei Urban, small baseline subsets InSAR, interferometric point target analysis, temporal and spatial evolution characteristics

中图分类号: 

  • P642.26
[1] 杨 迪. 地面沉降的中国应对. 中国新闻周刊,2012(42):30-32.(Yang D. China’s response to land subsidence. China Newsweek,2012(42):30-32.)
[2] 秦同春,程国明,王海刚. 国际地面沉降研究进展的启示. 地质通报,2018,37(2-3):503-509.(Qin T C,Cheng G M,Wang H G. The latest progress of research on land subsidence abroad and its inspiration to China. Geological Bulletin of China,2018,37(2-3):503-509.)
[3] 周载阳. 地下水开采引起地面沉降的机理研究. 工程勘察,2012,40(3):22-26.(Zhou Z Y. Anism research of land subsidence caused by groundwater extraction. Geotechnical Investiga-tion & Surveying,2012,40(3):22-26.)
[4] Ferretti A,Prati C,Rocca F. Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing,2001,39(1):8-20.
[5] Berardino P,Fornaro G,Lanari R,et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience & Remote Sensing,2002,40(11):2375-2383.
[6] Werner C,Wegmuller U,Strozzi T,et al. Interferometric point target analysis for deformation mapping ∥ 2003 IEEE International Geoscience and Remote Sensing Symposium. Toulouse,France:IEEE,2003:4362-4364.
[7] Ferretti A,Fumagalli A,Novali F,et al. A new algorithm for processing interferometric data-stacks:SqueeSAR. IEEE Transactions on Geoscience and Remote Sensing,2011,49(9):3460-3470.
[8] 俞晓莹,姜成岭,张 建等. IPTA监测圣佩德罗湾港口地表时序沉降. 测绘科学,2012,37(6):21-25.(Yu X Y,Jiang C L,Zhang J,et al. IPTA monitoring long-term series surface deformation of SAN PEDRO. Science of Surveying and Mapping,2012,37(6):21-25.)
[9] 陈蓓蓓,宫辉力,李小娟等. 综合时序InSAR和GIS技术地面沉降时序演化规律研究. 光谱学与光谱分析,2014,34(4):1017-1025.(Chen B B,Gong H L,Li X J,et al. Spatial-temporal evolution characterization of land subsidence by multi-temporal InSAR method and GIS technology. Spectroscopy and Spectral Analysis,2014,34(4):1017-1025.)
[10] 周超凡,宫辉力,陈蓓蓓等. 北京地面沉降时空分布特征研究. 地球信息科学学报,2017,19(2):205-215.(Zhou C F,Gong H L,Chen B B,et al. Study of Temporal and Spatial Characteristics of Land Subsidence in Beijing. Journal of Geo-information Science,2017,19(2):205-215.)
[11] 高明亮. InSAR时序融合的沉降场演变过程分析——以北京平原北部沉降区为例. 博士学位论文. 北京:首都师范大学,2017.(Gao M L. Analysis of evolution process of land subsidence based on InSAR temporal fusion - taking subsidence area in northern Beijing plain as an example. Ph. D. Dissertation. Beijing:Capital Normal University,2017.)
[12] 安海波. 华北平原地裂缝成因机理研究——以河间地裂缝为例. 硕士学位论文. 西安:长安大学,2011.(An H B. Study on cause of formation and mechanism about ground fissures of Hejian District in the North China Plain. Master Dissertation. Xi’an:Chang’an University,2011.)
[13] 郭海朋,白晋斌,张有全等. 华北平原典型地段地面沉降演化特征与机理研究. 中国地质,2017,44(6):1115-1127.(Guo H P,Bai J B,Zhang Y Q,et al. The evolution characteristics and mechanism of the land subsidence in typical areas of the North China Plain. Geology in China,2017,44(6):1115-1127.)
[14] 何庆成,刘文波,李志明. 华北平原地面沉降调查与监测. 高校地质学报,2006,12(2):195-209.(He Q C,Liu W B,Li Z M. Land Subsidence Survey and Monitoring in the North China Plain. Geological Journal of China Universities,2006,12(2):195-209.)
[15] 马 荣. 华北平原含水层非均质性研究——以石家庄栾城县为例. 博士学位论文. 北京:中国地质科学院,2012.(Ma R. Dealing with the spatial synthetic heterogeneity of aquifers in the North China Plain:A case study of Luancheng county in Hebei province. Ph.D. Dissertation. Beijing:Chinese Academy of Geological Sciences,2012.)
[16] 朱菊艳,郭海朋,李文鹏等. 华北平原地面沉降与深层地下水开采关系. 南水北调与水利科技,2014,12(3):165-169.(Zhu J Y,Guo H P,Li W P,et al. Relationship between land subsidence and deep groundwater yield in the North China Plain. South-to-North Water Transfers and Water Science & Technology,2014,12(3):165-169.)
[17] 张海波,李宗春,许 兵等. IPTA方法在地面沉降监测中的应用. 测绘科学技术学报,2016,33(2):145-149.(Zhang H B,Li Z C,Xu B,et al. Ground subsidence monitoring using interferometric point target analysis. Journal of Geomatics Science and Technology,2016,33(2):145-149.)
[1] 杨 蕴, 宋 健, 朱 琳, 吴剑锋, 王锦国. 基于KELM地面沉降替代模型的地下水多目标管理模型研究[J]. 南京大学学报(自然科学版), 2019, 55(3): 349-360.
[2] 董少春,种亚辉,胡 欢,黄璐璐. 基于时序InSAR的常州市2015-2018年地面沉降监测[J]. 南京大学学报(自然科学版), 2019, 55(3): 370-380.
[3] 吕海敏,沈水龙,严学新,史玉金,许烨霜. 上海地面沉降对轨道交通安全运营风险评估[J]. 南京大学学报(自然科学版), 2019, 55(3): 392-400.
[4] 徐成华,谈金忠,骆祖江,李 兆. 地铁盾构施工引发地面沉降三维流固全耦合数值模拟预测[J]. 南京大学学报(自然科学版), 2019, 55(3): 409-419.
[5] 叶 超,田 芳,罗 勇,王新惠,田苗壮,崔文君,王立发,雷坤超. 北京地面沉降控制区划及防控措施[J]. 南京大学学报(自然科学版), 2019, 55(3): 440-448.
[6] 严学新,杨天亮,林金鑫,黄鑫磊,王建秀. 超深基坑减压降水引发地面沉降的估算及其影响因素分析[J]. 南京大学学报(自然科学版), 2019, 55(3): 401-408.
[7] 杨建民,于佳卉,霍王文. 区域性地面沉降形状参数c1与c2间线性关系研究[J]. 南京大学学报(自然科学版), 2019, 55(3): 420-428.
[8] 毛 磊,张 岩,刘明遥,龚绪龙,于 军,叶淑君. 江苏沿海地区地面沉降约束下的地下水可采资源量评价[J]. 南京大学学报(自然科学版), 2019, 55(3): 429-439.
[9] 罗 跃,严学新,杨天亮,叶淑君,吴吉春. 上海陆域地区地下水采灌与地面沉降的时空特征[J]. 南京大学学报(自然科学版), 2019, 55(3): 449-457.
[10] 卢 毅,于 军,龚绪龙,王宝军,魏广庆,季峻峰. 基于DFOS的连云港第四纪地层地面沉降监测分析[J]. 南京大学学报(自然科学版), 2018, 54(6): 1114-1123.
[11]  杨 蕴1,朱 琳2*,林 锦3,王锦国1.  考虑地面沉降约束的地下水模拟优化管理模型[J]. 南京大学学报(自然科学版), 2016, 52(3): 470-478.
[12] 贺小桐1,叶淑君1*,于军2,吴吉春1,龚绪龙2. 基于固体颗粒速度场的三维地面沉降模拟[J]. 南京大学学报(自然科学版), 2015, 51(6): 1268-1278.
[13]  叶淑君 1 ** , 薛禹群 1 , 吴吉春 1 , 李勤奋 2 .  基于修正麦钦特模型的地面沉降模拟:以上海为例*

[J]. 南京大学学报(自然科学版), 2011, 47(3): 291-298.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 章康宁, 卢 晶. 指向性小尺度线性扬声器阵列鲁棒性研究[J]. 南京大学学报(自然科学版), 2019, 55(2): 180 -190 .
[2] 董越男,吴兵党. 铁离子对紫外/乙酰丙酮法降解甲基橙的影响[J]. 南京大学学报(自然科学版), 2019, 55(3): 504 -510 .
[3] 韩普,刘亦卓,李晓艳. 基于深度学习和多特征融合的中文电子病历实体识别研究[J]. 南京大学学报(自然科学版), 2019, 55(6): 942 -951 .
[4] 张家精,夏巽鹏,陈金兰,倪友聪. 基于张量分解和深度学习的混合推荐算法[J]. 南京大学学报(自然科学版), 2019, 55(6): 952 -959 .
[5] 郑文萍,刘韶倩,穆俊芳. 一种基于相对熵的随机游走相似性度量模型[J]. 南京大学学报(自然科学版), 2019, 55(6): 984 -999 .
[6] 许汇源,侯读杰,刘全有. 东营凹陷沙河街组泥页岩中正丙基胆甾烷与异海绵烷的研究:硫循环对有机质富集的影响[J]. 南京大学学报(自然科学版), 2020, 56(3): 366 -381 .
[7] 戴海亮,沈斌,李开开,张小涛,徐学敏,许智超,周晶晶. 地质条件约束下川北二叠系大隆组富有机质页岩热模拟生烃过程及特征研究[J]. 南京大学学报(自然科学版), 2020, 56(3): 382 -392 .
[8] 任睿,张超,庞继芳. 有限理性下多粒度q⁃RO模糊粗糙集的最优粒度选择及其在并购对象选择中的应用[J]. 南京大学学报(自然科学版), 2020, 56(4): 452 -460 .
[9] 郑建兴,李沁文,王素格,李德玉. 基于翻译模型的异质重边信息网络链路预测研究[J]. 南京大学学报(自然科学版), 2020, 56(4): 541 -548 .
[10] 李昭阳,龚安民,伏云发. 基于EEG脑网络下肢动作视觉想象识别研究[J]. 南京大学学报(自然科学版), 2020, 56(4): 570 -580 .