南京大学学报(自然科学版) ›› 2020, Vol. 56 ›› Issue (3): 382–392.doi: 10.13232/j.cnki.jnju.2020.03.007

• • 上一篇    下一篇

地质条件约束下川北二叠系大隆组富有机质页岩热模拟生烃过程及特征研究

戴海亮1,2,沈斌2,李开开1,3(),张小涛2,徐学敏2,许智超2,周晶晶1,2   

  1. 1.中国地质大学(北京)能源学院,北京,100083
    2.国家地质实验测试中心,北京,100037
    3.非常规天然气地质评价与开发工程北京市重点实验室,北京,100083
  • 收稿日期:2020-03-03 出版日期:2020-05-30 发布日期:2020-06-03
  • 通讯作者: 李开开 E-mail:likaikai@cugb.edu.cn
  • 基金资助:
    中国地质调查局地质调查项目(DD20190086);国家自然科学基金(41972154)

Characteristics and hydrocarbon⁃gernerating process of the organic⁃rich shale of Permian Dalong Formation in North Sichuan:Pyrolysis experiments with geological constraint

Hailiang Dai1,2,Bin Shen2,Kaikai Li1,3(),Xiaotao Zhang2,Xuemin Xu2,Zhichao Xu2,Jingjing Zhou1,2   

  1. 1.School of Energy Resource,China University of Geosciences (Beijing),Beijing,100083,China
    2.National Geological Experimental Testing Center,Beijing,100037,China
    3.Beijing Key Laboratory of Unconventional Natural Gas Geological Evaluation and;Development Engineering,Beijing,100083,China
  • Received:2020-03-03 Online:2020-05-30 Published:2020-06-03
  • Contact: Kaikai Li E-mail:likaikai@cugb.edu.cn

摘要:

选取川北大隆组低熟富有机质页岩样品作为实验对象,综合考虑了地质约束条件(静岩压力、流体压力和地层水等因素)对生烃作用的影响,从低熟到过成熟进行了全系列的热模拟,并对各温度点的热产物进行气体组分及同位素分析.结果表明:热模拟实验产生的烃类气体产率随温度升高而增大,在500 ℃达到峰值,随后明显下降并趋于平稳.烃类气体产率的降低与静岩压力、流体压力以及孔隙发育有着密切关系.压力的不断增大抑制了页岩中有机质的分解,并导致孔隙度降低和孔径减小,排烃不畅,影响了生烃产率.滞留于样品中的重烃组分发生热裂解,最终形成了以高CH4含量特征的原油裂解气,并呈现鲜明的ln(C2/C3)随温度变化特征和碳同位素部分倒转现象.研究为大隆组深层页岩气的有效开发提供前期基础性实验数据和生烃、演化特征方面的成果支持.

关键词: 地质约束, 热模拟实验, 生烃特征, 孔隙演化, 碳同位素, 深层页岩气

Abstract:

Semi?closed thermal simulation experiments were performed on the immature organic?rich shale samples from the Dalong Formation in northern Sichuan Basin,taking into account the geological constraints,e.g.,static rock pressure,fluid pressure,and formation water. Gas composition and carbon isotope of the thermal products at each temperature point were determined. The results show that the productivity of hydrocarbon gas increases with temperature (with a peak at 500 °C) and then show a generally decreasing trend. It seems that the decline in the productivity of hydrocarbon gas is closely correlated with the change of static rock pressure,fluid pressure and porosity. The increasing pressure with progressive burial seems to have retarded the pyrolysis process and promoted porosity destruction and pore?size decrease,finally leading to the block of hydrocarbons expulsion and decline in the productivity of hydrocarbon gas. The heavy hydrocarbons left in the samples were then subjected to thermal cracking and formed hydrocarbon gas,showing a distinguishable correlation between ln (C2/C3) and temperature and the local reversal in carbon isotopes. This study provides basic experimental data and great insights into characteristics and hydrocarbon?gernerating process for the shales in Dalong Formation,and have application for further exporation of deep shale gas.

Key words: geological constraints, thermal simulation experiments, hydrocarbon generation characteristics, pore evolution, carbon isotopes, deep shale gas

中图分类号: 

  • P618.13

表1

上寺大隆组页岩样品基础地球化学参数"

TOC(wt.%)

Ro

(%)

S1

(mg HC·g-1

S2

(mg HC·g-1

S3

(mg CO2·g-1

Tmax

(℃)

HI

(mg HC·g-1TOC)

OI

(mg CO2·g-1TOC)

8.760.730.9943.30.222438.3494.292.53

表2

热模拟实验具体参数表"

温度点(℃)模拟深度(m)静岩压力(MPa)排烃流体压力阀值(MPa)
30028007736
32533009644.4
350380012155.2
375440012858.8
400500013662.4
425540014164.8
450600015872
500650017178
550700018484
590750019890
650805021396.6

表3

不同模拟温度条件下大隆组页岩样品的气体产率"

温度(℃)模拟Ro(%)

非烃类气

(mL·g-1 TOC)

烃 气

(mL·g-1 TOC)

干燥系数(%)

总气

(mL·g-1 TOC)

烃类气

(mL·g-1 TOC)

N2CO2H2C1C2C3C4C5C2+
3000.832.860.710.400.540.040.010.010.000.0590.9641.960.59
32512.5724.871.089.941.080.400.180.081.7485.1343.0811.68
3501.311.384.001.696.521.770.500.170.032.4772.5328.618.99
3751.639.9714.794.5733.959.313.000.920.2513.4971.57116.1547.44
4001.819.1934.405.3558.6516.546.922.740.8627.0668.42146.9685.71
4252.127.7867.808.7699.5529.5614.646.572.1752.9465.28260.23152.49
4502.623.8085.4915.03156.5440.4619.227.811.9769.4669.27358.72226.00
5003.145.0780.1325.51223.8857.7926.168.741.7394.4370.33484.97318.31
5503..6233.0210.5910.99270.804.010.380.120.004.5298.36625.31275.32
5904353.166.9013.39258.338.540.030.160.009.3796.50766.07267.70
6504.5146.1112.3917.31263.563.850.010.030.004.0598.49510.98267.60

图1

热模拟气体产率(a)总气体产率;(b)C1和C2产率;(c)无机气产率和干燥系数;(d)变化曲线"

表4

不同模拟温度气体产物单体烃碳同位素结果统计表"

模拟温度(℃)成熟度(%)C1(‰)C2(‰)CO2(‰)C3(‰)
3751.6-47.7-38-12.8-34.4
4001.8-42.3-31.5-8-27.6
4252.2-41.7-33.2-11.6-31.2
4502.5-34.9-26.7-11.1-22.7
5003.1-33.2-24.02-17.4-23.4
5503.5-34.8-24.4-21.6-26.0
5904-36.5-26.2-22.5-28.7

图2

不同气体组分碳同位素值随成熟度和温度变化特征"

图3

孔隙比孔容(a)和比表面积(b)随温度升高而变化的特征"

图4

不同有机质升温模拟过程中烃类气(a)和非烃类气(b)含量变化特征对比(Ⅱ型有机质数据来源于文献[18],Ⅲ型有质数据来源于文献[19])"

图5

ln(C2/C3)随温度变化关系特征(干酪根热解气和原油裂解气数据来源于文献[22])"

图6

ln(C2/C3) 和ln(C1/C2)协同关系变化特征(干酪根热解气和原油裂解气数据来源于文献[22])"

1 何幼斌,罗进雄. 中上扬子地区晚二叠世长兴期岩相古地理. 古地理学报,2010,12(5):497-514.
He Y B,Luo J X. Lithofacies palaeogeography of the Late Permian Changxing age in middle and upper Yangtze region. Journal of Palaeogeography,2010,12(5):497-514.
2 腾格尔,高长林,胡凯等. 上扬子东南缘下组合优质烃源岩发育及生烃潜力. 石油实验地质,2006,28(4):359-365.
Teng G E,Gao C L,Hu K,et al. High?quality source rocks in the lower combination in southeast Upper?Yangtze area and their hydrocarbon generating potential. Petroleum Geology & Experiment,2006,28(4):359-365.
3 李红敬,解习农,林正良等. 四川盆地广元地区大隆组有机质富集规律. 地质科技情报,2009,28(2):98-103.
Li H J,Xie X N,Lin Z L,et al. Organic matter enrichment of Dalong Formation in Guangyuan area of the Sichuan Basin. Geological Science and Technology Information,2009,28(2):98-103.
4 张毅,郑书粲,高波等. 四川广元上寺剖面上二叠统大隆组有机质分布特征与富集因素. 地球科学,2017,42(6):1008-1025.
Zhang Y,Zheng S C,Gao B,et al. Distribution characteristics and enrichment factors of organic matter in Upper Permian Dalong Formation of Shangsi section,Guangyuan,Sichuan Basin. Earth Science,2017,42(6):1008-1025.
5 刘敏,卢双舫,薛海涛等. 川东北地区上二叠统大隆组烃源岩生烃动力学应用. 科学技术与工程,2011,11(17):3923-3928.
Liu M,Lu S Y,Xue H T,et al. Chemical kinetics application of hydrocarbon generation of Upper Permian Dalong stratum in the Northeastern Sichuan Basin. Science Technology and Engineering,2011,11(17):3923-3928.
6 陈瑞银,朱光有,周文宝等. 川北地区大隆组烃源岩地球化学特征与生气潜力初探. 天然气地球科学,2013,24(1):99-107.
Chen R Y,Zhu G Y,Zhou W B,et al. Geochemical characteristics and hydrocarbon resource potential of Dalong formation permian,Northeast Sichuan. Natural Gas Geoscience,2013,24(1):99-107.
7 邹才能,赵群,董大忠等. 页岩气基本特征、主要挑战与未来前景. 天然气地球科学,2017,28(12):1781-1796.
Zou C N,Zhao Q,Dong D Z,et al. Geological characteristics,main challenges and future prospect of shale gas. Natural Gas Geoscience,2017,28(12):1781-1796.
8 王一刚,文应初,洪海涛等. 四川盆地开江?梁平海槽内发现大隆组. 天然气工业,2006,26(9):32-36.
Wang Y G,Wen Y C,Hong H T,et al. Dalong formation found in Kaijiang?Liangping ocenic trough in the Sichuan Basin. Natural Gas Industry,2006,26(9):32-36.
9 郑伦举,秦建中,何生等. 地层孔隙热压生排烃模拟实验初步研究. 石油实验地质,2009,31(3):296-302.
Zheng L J,Qin J Z,He S,et al. Preliminary study of formation porosity thermocompression simulation experiment of hydrocarbon generation and expulsion. Petroleum Geology & Experiment,2009,31(3):296-302.
10 余晓露,马中良,郑伦举等. 不同热模拟方式下烃源岩干酪根演化特征红外光谱分析. 石油实验地质,2017,39(1):134-140.
Yu X L,Ma Z L,Zheng L J,et al. FTIR analyses of source rock kerogen from different hydrous pyrolysis experiments. Petroleum Geology & Experiment,2017,39(1):134-140.
11 廖玲玲. 基于全岩的不同类型烃源岩生?留?排烃的实验模拟与应用研究. 博士学位论文. 广州:中国科学院研究生院(广州地球化学研究所),2016. (Liao L L. Experimental simulation and application research on the generation,retention and expulsion of different types of source rocks based on whole rocks.Ph.D. Dissertation. Guangzhou:Graduate School of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry),2016.)
12 付小东,秦建中,姚根顺等. 两种温压体系下烃源岩生烃演化特征对比及其深层油气地质意义. 地球化学,2017,46(3):262-275.
Fu X D,Qin J Z,Yao G S,et al. The comparison of hydrocarbon generation and evolution characteristics between two temperaturepressure simulation systems and its geological significance for deep reservoir exploration. Geochimica,2017,46(3):262-275.
13 Song D J,Tuo J C,Zhang M F,et al. Hydrocarbon generation potential and evolution of pore characteristics of Mesoproterozoic shales in north China:Results from semi?closed pyrolysis experiments. Journal of Natural Gas Science and Engineering,2019,62:171-183.
14 黄第藩,李晋超. 干酪根类型划分的X图解. 地球化学,1982(1):21-30.
Huang D F,Li J C. X?diagram of kerogen classification and the characters of kerogen of standard humic type. Geochimica,1982(1):21-30.
15 刘洪林,王红岩,方朝合等. 中国南方海相页岩气超压机制及选区指标研究. 地学前缘,2016,23(2):48-54.
Liu H L,Wang H Y,Fang C H,et al. The formation mechanism of over?pressure reservoir and target screening index of the marine shale in the South China. Earth Science Frontiers,2016,23(2):48-54.
16 陈聪,张健,罗冰等. 四川盆地西北部地区中三叠统——古生界压力封存箱与油气成藏. 天然气工业,2019,39(4):37-47.
Chen C,Zhang J,Luo B,et al. Relationship between pressure compartment and hydrocarbon accumulation in the Middle Triassic–Paleozoic in NW Sichuan Basin. Natural Gas Industry,2019,39(4):37-47.
17 吴忠锐,何生,何希鹏等. 涟源凹陷上二叠统大隆组泥页岩裂缝方解石脉体流体包裹体特征及其启示. 地质科技情报,2019,38(4):70-81.
Wu Z R,He S,He X P,et al. Characteristics of fluid inclusions in fracture calcite veins and implications of Upper Permain Dalong formation shale at the Lianyuan depression. Geological Science and Technology Information,2019,38(4):70-81.
18 宋董军,吴陈君,陈科等. 海陆相泥页岩气体生成的半封闭模拟实验. 地球科学,2019,44(11):3639-3652.
Song D J,Wu C J,Chen K,et al. Gas generation from marine and terrestrial shales by semi-closed pyrolysis experiments. Earth Science,2019,44(11):3639-3652.
19 张闯辉. 煤中镜质组生烃演化的热模拟实验研究. 硕士学位论文. 北京:中国矿业大学,2018.
Zhang C H. Thermal simulation experimental study on the evolution of hydrocarbon generation in coal vitrinite. Master Dissertation. Beijing:China University of Mining and Technology,2018.
20 陈晓艳,田福清,邹华耀等. 湖相烃源岩热演化生烃研究——基于冀中坳陷烃源岩加水热模拟实验. 天然气地球科学,2018,29(1):103-113.
Chen X Y,Tian F Q,Zou H Y,et al. Study on hydrocarbon?generation of lacustrine source rocks based on hydrous pyrolysis experiments of source rocks from Jizhong Depression,Bohai Bay Basin. Natural Gas Geoscience,2018,29(1):103-113.
21 汤庆艳,张铭杰,余明等. 页岩气形成机制的生烃热模拟研究. 煤炭学报,2013,38(5):742-747.
Tang Q Y,Zhang M J,Yu M,et al. Pyrolysis constraints on the generation mechanism of shale gas. Journal of China Coal Society,2013,38(5):742-747.
22 刘文汇,王杰,腾格尔等. 南方海相不同类型烃源生烃模拟气态烃碳同位素变化规律及成因判识指标. 中国科学:地球科学,2012,42(7):973-982.
Liu W H,Wang J,Teng G E,et al. Carbon isotope variation of gaseous hydrocarbons from different types of hydrocarbon sources in the southern marine facies and their genesis indicators. Chinese Science:Earth Science,2012,42(7):973-982.
23 Dai J X,Zou C N,Dong D Z,et al. Geochemical characteristics of marine and terrestrial shale gas in China. Marine and Petroleum Geology,2016,76:444-463.
24 Stainforth J G. Practical kinetic modeling of petroleum generation and expulsion. Marine and Petroleum Geology,2009,26:552-572.
25 刘全有,刘文汇,陈践发等. 塔里木盆地侏罗系煤热模拟实验——氮的地化特征与意义. 天然气工业,2003,23(1):26-29.
Liu Q Y,Liu W H,Chen J F,et al. Thermal simulation experiment of Jurassic coals in Talimu Basin:geochemical characteristics and significance of nitrogen. Natural Gas Industry,2003,23(1):26-29.
26 苏越,王伟明,李吉君等. 中国南方海相页岩气中氮气成因及其指示意义. 石油与天然气地质,2019,40(6):1185-1196.
Su Y,Wang W M,Li J J,et al. Origin of nitrogen in marine shale gas in Southern China and its significance as an indicator. Oil and Gas Geology,2019,40(6):1185-1196.
27 姜峰,杜建国,王万春等. 高温超高压模拟实验研究:I. 温压条件对有机质成熟作用的影响. 沉积学报,1998,16(3):153-155,160.
Jiang F,Du J G,Wang W C,et al. The study on high pressure high temperature aqueous pyrolysis Ⅰ. Influence of temperature and pressure on maturation of organic matter. Acta Sedimentologica Sinica,1998,16(3):153-155,160.
28 张毅,胡守志,廖泽文等. 基于压机热模拟实验的页岩孔隙演化特征. 地球科学,2019,44(3):983-992.
Zhang Y,Hu S Z,Liao Z W,et al. Shale pore evolution characteristics based on semi?closed pyrolysis experiment. Earth Science,2019,44(3):983-992.
29 Chen F W,Zhao H Q,Lu S F,et al. The effects of composition,laminar structure and burial depth on connected pore characteristics in a shale oil reservoir,the Raoyang Sag of the Bohai Bay Basin,China. Marine and Petroleum Geology,2019,101:290-302.
30 孙健,程鹏,盖海峰. 同源不同成熟度天然气的混合对天然气碳同位素的影响. 地球化学,2018,47(4):354-362.
Sun J,Cheng P,Gai H F. Effects of mixing of gas generated from the same source rock with different maturities on its carbon isotopic characteristics. Geochimica,2018,47(4):354-362.
31 屈振亚,孙佳楠,史健亭等.页岩气稳定碳同位素特征研究.天然气地球科学,2015,26(7):1376-1384.
Qu Z Y,Sun J N,Shi J T,et al. Study on stable carbon isotope characteristics of shale gas. Natural Gas Geosciences,2015,26(7):1376-1384
32 高栋臣,郭超,姜呈馥等. 鄂尔多斯盆地山西组低成熟度页岩生烃热模拟. 石油实验地质,2018,40(3):454-460.
Gao D C,Guo C,Jiang C F,et al. Hydrocarbon generation simulation of low?maturity shale in Shanxi Formation,Ordos Basin. Petroleum Geology & Experiment,2018,40(3):454-460.
33 戴金星,夏新宇,秦胜飞等. 中国有机烷烃气碳同位素系列倒转的成因. 石油与天然气地质,2003,24(1):1-6,11.
Dai J X,Xia X Y,Qin S F,et al. Causation of partly reversed orders of δ13C in biogenic alkane gas in China. Oil & Gas Geology,2003,24(1):1-6,11.
34 戴金星. 煤成气及鉴别理论研究进展. 科学通报,2018,63(14):1291-1305.
Dai J X. Coal?derived gas theory and its discrimination. Chinese Science Bulletin,2018,63(14):1291-1305.
35 赵文智,王兆云,王东良等. 分散液态烃的成藏地位与意义. 石油勘探与开发,2015,42(4):401-413.
Zhao W Z,Wang Z Y,Wang D L,et al. Contribution and significance of dispersed liquid hydrocarbons to reservoir formation. Petroleum Exploration and Development,2015,42(4):401-413.
[1] 王浩哲,刘虎,韦志伟,邓倩,李诗达,张海祖,程斌,廖泽文. 塔里木盆地东部上寒武统SPICE事件检出及其油气地球化学意义[J]. 南京大学学报(自然科学版), 2020, 56(3): 354-365.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 缪长健, 施斌, 郑兴, 王湛, 魏广庆. 海上超长PHC管桩BOFDA内力测试[J]. 南京大学学报(自然科学版), 2018, 54(6): 1057 -1063 .
[2] 周星星,张海平,吉根林. 具有时空特性的区域移动模式挖掘算法[J]. 南京大学学报(自然科学版), 2018, 54(6): 1171 -1182 .
[3] 顾健伟, 曾 诚, 邹恩岑, 陈 扬, 沈 艺, 陆 悠, 奚雪峰. 基于双向注意力流和自注意力结合的机器阅读理解[J]. 南京大学学报(自然科学版), 2019, 55(1): 125 -132 .
[4] 彭 宏, 刘 晨, 卢为党, 张 昱, 刘 鑫, 徐志江. 协作中继传输网络中基于无线供电的能量交易方法[J]. 南京大学学报(自然科学版), 2019, 55(2): 202 -210 .
[5] 杨 薇, 王洪元, 张 继, 张中宝. 一种基于Faster-RCNN的车辆实时检测改进算法[J]. 南京大学学报(自然科学版), 2019, 55(2): 231 -237 .
[6] 徐秀芳, 徐 森, 花小朋, 徐 静, 皋 军, 安 晶. 一种基于t-分布随机近邻嵌入的文本聚类方法[J]. 南京大学学报(自然科学版), 2019, 55(2): 264 -271 .
[7] 曹 群,陈蓓蓓,宫辉力,周超凡,罗 勇,高明亮,王 旭,史 珉,赵笑笑,左俊杰. 基于SBAS和IPTA技术的京津冀地区地面沉降监测[J]. 南京大学学报(自然科学版), 2019, 55(3): 381 -391 .
[8] 毛 磊,张 岩,刘明遥,龚绪龙,于 军,叶淑君. 江苏沿海地区地面沉降约束下的地下水可采资源量评价[J]. 南京大学学报(自然科学版), 2019, 55(3): 429 -439 .
[9] 叶 超,田 芳,罗 勇,王新惠,田苗壮,崔文君,王立发,雷坤超. 北京地面沉降控制区划及防控措施[J]. 南京大学学报(自然科学版), 2019, 55(3): 440 -448 .
[10] 董越男,吴兵党. 铁离子对紫外/乙酰丙酮法降解甲基橙的影响[J]. 南京大学学报(自然科学版), 2019, 55(3): 504 -510 .