南京大学学报(自然科学版) ›› 2019, Vol. 55 ›› Issue (2): 180–190.doi: 10.13232/j.cnki.jnju.2019.02.003

• • 上一篇    下一篇

指向性小尺度线性扬声器阵列鲁棒性研究

章康宁,卢 晶*   

  1. 南京大学声学研究所,近代声学教育部重点实验室,南京,210093
  • 接受日期:2018-11-26 出版日期:2019-04-01 发布日期:2019-03-31
  • 通讯作者: 卢 晶 E-mail:1838234189@qq.com
  • 基金资助:
    国家自然科学基金(11874219)

Research on robustness of directional small-size linear loudspeaker array

Zhang Kangning,Lu Jing*   

  1. Key Laboratory of Modern Acoustics,Institute of Acoustics,Nanjing University,Nanjing,210093,China
  • Accepted:2018-11-26 Online:2019-04-01 Published:2019-03-31
  • Contact: Lu Jing E-mail:1838234189@qq.com

摘要: 随着近年来通信便携设备的快速发展,基于扬声器阵列的声聚焦系统被广大研究者高度关注,而其声回放特性一般只能采用小尺度线性扬声器阵列来实现. 声对比度控制法通过将亮区与暗区的声能量比值最大化,将系统的声能量集中在亮区,该算法在小尺度线性扬声器阵列声聚焦的实现上有着较好的应用前景. 大多数关于声学对比度控制的分析都是基于自由场模型的,然而在实际应用场景中,混响和近场人头散射效应的影响都不容忽视,特别是在阵列尺度较小时. 重点针对这一问题开展了相应的研究,建立了一个由5单元小尺度线性扬声器阵列构成的系统模型,其将系统的声能量主要集中于阵列端射方向的亮区,在房间混响和近场人头散射的共同作用下分析系统聚焦性能的鲁棒性,并通过实验验证了实际系统的声聚焦性能.

关键词: 扬声器阵列, 声对比度控制, 混 响, 人头散射

Abstract: With the rapid development of communication portable devices in recent years,the sound focusing system based on the loudspeaker array has been highly concerned by researchers,and its sound playback performance can generally only be realized using the small-scale linear loudspeaker array. Acoustic Contrast Control(ACC)algorithm concentrates the sound energy of the system in the bright zone by maximizing the sound energy ratio between the bright zone and the dark zone. The algorithm has a good application prospect in the realization of the acoustic focusing of the small-scale linear loudspeaker array. Most of the analysis on the acoustic contrast control are based on free-field model. However,in practical application in normal rooms,both the reverberation and the near-field scattering effects cannot be neglected,especially when a small size array system is used. This paper focuses on this problem and establishes a system model consisting of a 5-channel linear loudspeaker array,which concentrating the sound energy of the system mainly in the bright zone in the endfire direction of the linear loudspeaker array. The robustness of the focusing performance of the system is analyzed under the joint influence of reverberation and near-field head scattering. The experimental system is constructed to verify the acoustic focusing performance of the actual system.

Key words: loudspeaker array, Acoustic Contrast Control, reverberation, head scattering

中图分类号: 

  • O429
[1] Betlehem T,Zhang W,Poletti M A,et al. Personal sound zones:Delivering interface-free audio to multiple listeners. IEEE Signal Processing Magazine,2015,32(2):81-91.
[2] Elliott S J,Jones M. An active headrest for personal audio. The Journal of the Acoustical Society of America,2006,119(5):2702-2709.
[3] Elliott S J,Cheer J,Murfet H,et al. Minimally radiating sources for personal audio. The Journal of the Acoustical Society of America,2010,128(4):1721-1728.
[4] Cheer J,Elliott S J,Kim Y,et al. Practical implementation of personal audio in a mobile device. Journal of the Audio Engineering Society,2013,61(5):290-300.
[5] Simón-Glvez M F,Elliott S J,Cheer J. A superdirective array of phase shift sources. The Journal of the Acoustical Society of America,2012,132(2):746-756.
[6] Cheer J,Elliott S J,Simón Glvez M F. Design and implementation of a car cabin personal audio system. Journal of the Audio Engineering Society,2013,61(6):412-424.
[7] Choi J W,Kim Y H. Generation of an acoustically bright zone with an illuminated region using multiple sources. The Journal of the Acoustical Society of America,2002,111(4):1695-1700.
[8] Simón-Glvez M F,Elliott S J,Cheer J. The effect of reverberation on personal audio devices. The Journal of the Acoustical Society of America,2014,135(5):2654-2663.
[9] Coleman P,Jackson P J B,Olik M,et al. Acoustic contrast,planarity and robustness of sound zone methods using a circular loudspeaker array. The Journal of the Acoustical Society of America,2014,135(4):1929-1940.
[10] Coleman P,Jackson P J B,Olik M,et al. Personal audio with a planar bright zone. The Journal of the Acoustical Society of America,2014,136(4):1725-1735.
[11] Shin M,Fazi F M,Hirono F C,et al. Control of a dual-layer loudspeaker array for the generation of private sound ∥ Proceedings of the 41st International Congress and Exposition on Noise Control Engineering,New York,USA,INCE Press,2012:1413-1423.
[12] Shin M,Fazi F M,Nelson P A,et al. Controlled sound field with a dual layer loudspeaker array. Journal of Sound and Vibration,2014,333(16):3794-3817. [13] Coleman P,Mller M,Olsen M,et al. Performance of optimized sound field control techniques in simulated and real acoustic environments. The Journal of the Acoustical Society of America,2012,131(4):3465.
[14] Elliott S J,Cheer J,Choi J W,et al. Robustness and regularization of personal audio systems. IEEE Transactions on Audio,Speech,and Language Processing,2012,20(7):2123-2133.
[15] Park J Y,Choi J W,Kim Y H. Acoustic contrast sensitivity to transfer function errors in the design of a personal audio system. The Journal of the Acoustical Society of America,2013,134(1):EL112-EL118.
[16] Cai Y F,Liu L,Wu M,et al. Robust time-domain acoustic contrast control design under uncertainties in the frequency response of the loudspeakers ∥ Proceedings of the 43rd International Congress and Exposition on Noise Control Engineering,Melbourne,Australia,INCE Press,2014:6110-6115.
[17] Chang J H,Jacobsen F. The effect of scattering on sound field control with a circular double-layer array of loudspeakers ∥ Proceedings of the 43rd International Congress and Exposition on Noise Control Engineering,Budapest,Hungary,2012:707-715.
[18] Chang J H,Jacobsen F. Experimental validation of sound field control with a circular double-layer array of loudspeakers. The Journal of the Acoustical Society of America,2013,133(4):2046-2054.
[19] 涂 臻,卢 晶. 散射条件下小尺度扬声器阵列声聚焦算法鲁棒性研究. 南京大学学报(自然科学),2016,52(2):382-389.(Tu Z,Lu J. Investigation on the robustness of acoustic focusing algorithm using small-scale loudspeaker array under scattering condition. Journal of Nanjing University(Natural Sciences),2016,52(2):382-389.)
[20] Jarrett D P,Habets E A P,Thomas M R P,et al. Rigid sphere room impulse response simulation:Algorithm and applications. The Journal of the Acoustical Society of America,2012,132(3):1462-1472.
[21] Allen J B,Berkley D A. Image method for efficiently simulating small-room acoustics. The Journal of the Acoustical Society of America,1979,65(4):943-950.
[1] 朱天一,卢 晶*. 基于双耳时间差的客观指标对Ambisonics回放系统的性能分析[J]. 南京大学学报(自然科学版), 2017, 53(6): 1153-.
[2] 涂 臻*,卢 晶 . 散射条件下小尺度扬声器阵列声聚焦算法鲁棒性研究[J]. 南京大学学报(自然科学版), 2016, 52(2): 382-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹 群,陈蓓蓓,宫辉力,周超凡,罗 勇,高明亮,王 旭,史 珉,赵笑笑,左俊杰. 基于SBAS和IPTA技术的京津冀地区地面沉降监测[J]. 南京大学学报(自然科学版), 2019, 55(3): 381 -391 .
[2] 游杰, 胡广, 张玺华, 沈安江, 彭瀚霖, 田兴旺, 赵东方. 微生物碳酸盐岩同生⁃早成岩阶段有机质降解示踪:以四川盆地灯影组四段为例[J]. 南京大学学报(自然科学版), 2020, 56(3): 308 -321 .
[3] 陈俊芬,赵佳成,韩洁,翟俊海. 基于深度特征表示的Softmax聚类算法[J]. 南京大学学报(自然科学版), 2020, 56(4): 533 -540 .
[4] 李亚重,杨有龙,仇海全. 一种基于嵌入式的弱标记分类算法[J]. 南京大学学报(自然科学版), 2020, 56(4): 549 -560 .