南京大学学报(自然科学版) ›› 2019, Vol. 55 ›› Issue (3): 449–457.doi: 10.13232/j.cnki.jnju.2019.03.012

• 地面沉降 • 上一篇    下一篇

上海陆域地区地下水采灌与地面沉降的时空特征

罗 跃1*,严学新2,3,杨天亮2,3,叶淑君4,吴吉春4   

  1. 1. 东华理工大学水资源与环境工程学院,南昌,330013; 2. 国土资源部地面沉降监测与防治重点实验室,上海市地质调查研究院,上海,200072; 3. 上海市地质调查研究院,上海,200072; 4. 南京大学地球科学与工程学院,南京,210023;
  • 收稿日期:2019-03-19 出版日期:2019-06-01 发布日期:2019-05-31
  • 通讯作者: 罗 跃 E-mail:kuaikuaikaikai@126.com
  • 基金资助:
    国家自然科学基金(41602258),东华理工大学江西省数字国土重点实验室开放研究基金(DLLJ201608)

Space-time characteristics of exploitation and recharge of groundwater and land subsidence of Shanghai’s land area

Luo Yue1*,Yan Xuexin2,3,Yang Tianliang2,3,Ye Shujun3,Wu Jichun4   

  1. 1. School of Water Resource and Environmental Engineering,East China University of Technology,Nanchang,330013,China; 2. Key Laboratory of Land Subsidence Monitoring and Prevention,Ministry of Land and Resource of China,Shanghai Institute of Geological Survey,Shanghai,200072,China; 3. Shanghai Institute of Geological Survey,Shanghai,200072,China; 4. School of Earth Science and Engineering,Nanjing University,Nanjing,210023,China;
  • Received:2019-03-19 Online:2019-06-01 Published:2019-05-31
  • Contact: Luo Yue E-mail:kuaikuaikaikai@126.com

摘要: 上海市地面沉降防治已有显著成效,但在空间格局上地表变形的不均匀性较显著,地面沉降防治管理进入了分区管控的新时期. 为配合分区管控,利用长时间序列的水位、地下水开采、分层标三类监测数据,结合区域地面沉降模型,探讨地下水采灌与地面沉降的时空特征. 上海市经历了两次长时间大范围的地下水开采,每次旋回分别经历开采量从增加到逐渐减少(甚至回灌)两个阶段. 第一旋回的时段是1860-1971年,地下水开采于1963年达到年度最大净抽水量,开采集中在核心区的浅部土层,导致了较严重地面沉降. 第二旋回的时段是1972年至今,地下水开采于1998年达到年度最大净抽水量,开采层位集中在第四承压含水层. 从1998年至2005年,此层逐渐减少地下水开采,未大量回灌,但地下水位抬升显著,说明此层地下水补给条件良好. 2006-2011年间,各土层的压缩已经大幅减小,宝山、嘉定和核心区的深部土层均有回弹,浅部土层虽然没有抬升,但压缩速率较小,最大沉降速率处于浦东区,为2.61 mm·a-1.

关键词: 上海市, 地下水采灌, 地面沉降, 地表回弹

Abstract: The prevention and control of land subsidence in Shanghai has achieved remarkable results,but the uneven surface deformation in the spatial pattern is significant,and the prevention and control of land subsidence has entered the new era of zoning control. In order to cooperate with the district control,this paper uses the long-term sequence water level,groundwater exploitation and extensometer monitoring data,combined with the regional land subsidence model to explore the space-time characteristics of groundwater exploitation and recharge,and land subsidence. Shanghai has experienced two long-term and large-scale groundwater exploitation cycles. The pumpage of every cycle went through increasing to decreasing. The period of the first cycle was from 1860 to 1971. In 1963,the groundwater exploitation reached the annual maximum net pumping volume. The mining concentrated in the shallow layers of core area,resulting in more serious land subsidence. The period of the second cycle is from 1972 to present. The groundwater exploitation reached the annual maximum net pumping volume in 1998,and the mining concentrated in the fourth confined aquifer. From 1998 to 2005,groundwater exploitation of this layer gradually reduced,and was not recharged too much. However,the groundwater level rose significantly. It indicated the groundwater recharge condition of this layer is good. During 2006 to 2011,the compression of layers has been greatly reduced. The deep layers in Baoshan,Jiading and core areas have rebounded. Although,the surface layer has not risen,the compression rate was small,the maximum sedimentation rate was 2.61 mm·a-1 in Pudong.

Key words: Shanghai city, pumping-injection of groundwater, land subsidence, surface rebound

中图分类号: 

  • P641.6
[1] 魏子新,翟刚毅,严学新等. 上海城市地质. 北京:地质出版社,2010,334.
[2] 许 言,杨天亮,焦 珣等. 上海地面沉降监测技术应用实践. 上海国土资源,2017,38(2):31-34.(Xu Y,Yang T L,Jiao X,et al. Application of land subsidence monitoring technology in Shanghai. Shanghai Land & Resource,2017,38(2):31-34.)
[3] 薛禹群,张 云,叶淑君等. 我国地面沉降若干问题研究. 高校地质学报,2006,12(2):153-160.(Xue Y Q,Zhang Y,Ye S J,et al. Research on the problems of land subsidence in China. Geological Journal of China Universities,2006,12(2):153-160.)
[4] Wu J C,Shi X Q,Ye S J,et al. Numerical simulation of viscoelastoplastic land subsidence due to groundwater overdrafting in Shanghai,China. Journal of Hydrologic Engineering,2010,15(3):223-236.
[5] Zhang Y,Xue Y Q,Wu J C,et al. Mechanical modeling of aquifer sands under long-term groundwater withdrawal. Engineering Geology,2012,125:74-80.
[6] Zhang Y,Wu J C,Xue Y Q,et al. Land subsidence and uplift due to long-term groundwater extraction and artificial recharge in Shanghai,China. Hydrogeology Journal,2015,23(8):1851-1866.
[7] 张 云,薛禹群,吴吉春. 上海砂土蠕变变形特征的试验研究. 岩土力学,2009,30(5):1226-1230,1236.(Zhang Y,Xue Y Q,Wu J C,et al. Experimental research on creep of Shanghai sands. Rock and Soil mechanics,2009,30(5):1226-1230,1236.)
[8] 罗 跃,叶淑君,吴吉春等. 上海市地下水位大幅抬升条件下土层变形特征分析. 高校地质学报,2015(2):243-254.(Luo Y,Ye S J,Wu J C,et al. Characterization of land subsidence during recovery of groundwater levels in Shanghai. Geological Journal of China Universities,2015(2):243-254.)
[9] 薛禹群,吴吉春,张 云等. 长江三角洲(南部)区域地面沉降模拟研究. 中国科学(D辑:地球科学),2008(4):477-492.(Xue Y Q,Wu J C,Zhang Y,et al. Simulation of regional land subsidence in the southern Yangtze Delt. Science in China Press,2008(4):477-492.)
[10] Shi X Q,Wu J C,Ye S J,et al. Regional land subsidence simulation in Su-Xi-Chang area and Shanghai City,China. Engineering Geology,2008,100(1-2):27-42.
[11] Ye S J,Xue Y Q,Wu J C,et al. Modeling visco-elastic-plastic deformation of soil with modified Merchant model. Environmental Earth Sciences,2012,66(5):1497-1504.
[12] Ye S J,Luo Y,Wu J C,et al. Three-dimensional numerical modeling of land subsidence in Shanghai,China. Hydrogeology Journal,2016,24(3):695-709.
[13] 杨天亮,王寒梅,焦 珣. 上海地面沉降防治分区管控方法研究. 上海国土资源,2014,35(4):105-109.(Yang T L,Wang H M,Jiao X,et al. Land subsidence zoning control in Shanghai. Shanghai Land & Resource,2014,35(4):105-109.)
[14] 焦 珣,王寒梅,杨天亮等. 考虑不可控因素下的地面沉降防治区划研究. 上海国土资源,2017,38(2):4-8,21.(Jiao X,Wang H M,Yang T L,et al. Regionalization of land subsidence prevention based on the consideration of uncontrollable factors. Shanghai Land & Resource,2017,38(2):4-8,21.)
[15] 魏子新,翟刚毅,严学新等. 上海城市地质图集. 北京:地质出版社,2010,123.(Wei Z X,Zhai G Y,Yan X X,et al. Atlas of Shanghai urban geology. Beijing:Geological Publishing House,2010,123.)
[16] 龚士良. 上海地面沉降影响因素综合分析与地面沉降系统调控对策研究. 博士学位论文. 上海:华东师范大学,2008.(Gong S L. The study on acting factors and systemic control of land subsidence in Shanghai. Ph.D.Dissertation. Shanghai:East China Normal University,2008.)
[17] 叶淑君. 区域地面沉降模型的研究与应用. 博士学位论文. 南京:南京大学,2004.(Ye S J. Study on the regional land subsidence model and its application. Ph.D.Dissertation. Nanjing:Nanjing University,2004.)
[18] 张 云,薛禹群,叶淑君等. 地下水位变化模式下含水砂层变形特征及上海地面沉降特征分析. 中国地质灾害与防治学报,2006,17(3):103-109.(Zhang Y,Xue Y Q,Ye S J,el al. Analysis of deformation of sand strata and land subsidence based on modes of groundwater level changes in Shanghai City. The Chinese Journal of Geological Hazard and Control,2006,17(3):103-109.)
[19] 罗 跃,叶淑君,吴吉春等. 区域地面沉降数值模拟可视化系统开发及应用. 华中科技大学学报(自然科学版),2018,10(46):28-33.(Luo Y,Ye S J,Wu J C,et al. Development and application of visualization system for numerical simulation of regional land subsidence. Journal of Huazhong University of Science and Technology(Natural Science Edition),2018,10(46):28-33.)
[1] 杨 蕴, 宋 健, 朱 琳, 吴剑锋, 王锦国. 基于KELM地面沉降替代模型的地下水多目标管理模型研究[J]. 南京大学学报(自然科学版), 2019, 55(3): 349-360.
[2] 董少春,种亚辉,胡 欢,黄璐璐. 基于时序InSAR的常州市2015-2018年地面沉降监测[J]. 南京大学学报(自然科学版), 2019, 55(3): 370-380.
[3] 曹 群,陈蓓蓓,宫辉力,周超凡,罗 勇,高明亮,王 旭,史 珉,赵笑笑,左俊杰. 基于SBAS和IPTA技术的京津冀地区地面沉降监测[J]. 南京大学学报(自然科学版), 2019, 55(3): 381-391.
[4] 吕海敏,沈水龙,严学新,史玉金,许烨霜. 上海地面沉降对轨道交通安全运营风险评估[J]. 南京大学学报(自然科学版), 2019, 55(3): 392-400.
[5] 徐成华,谈金忠,骆祖江,李 兆. 地铁盾构施工引发地面沉降三维流固全耦合数值模拟预测[J]. 南京大学学报(自然科学版), 2019, 55(3): 409-419.
[6] 叶 超,田 芳,罗 勇,王新惠,田苗壮,崔文君,王立发,雷坤超. 北京地面沉降控制区划及防控措施[J]. 南京大学学报(自然科学版), 2019, 55(3): 440-448.
[7] 严学新,杨天亮,林金鑫,黄鑫磊,王建秀. 超深基坑减压降水引发地面沉降的估算及其影响因素分析[J]. 南京大学学报(自然科学版), 2019, 55(3): 401-408.
[8] 杨建民,于佳卉,霍王文. 区域性地面沉降形状参数c1与c2间线性关系研究[J]. 南京大学学报(自然科学版), 2019, 55(3): 420-428.
[9] 毛 磊,张 岩,刘明遥,龚绪龙,于 军,叶淑君. 江苏沿海地区地面沉降约束下的地下水可采资源量评价[J]. 南京大学学报(自然科学版), 2019, 55(3): 429-439.
[10] 卢 毅,于 军,龚绪龙,王宝军,魏广庆,季峻峰. 基于DFOS的连云港第四纪地层地面沉降监测分析[J]. 南京大学学报(自然科学版), 2018, 54(6): 1114-1123.
[11]  杨 蕴1,朱 琳2*,林 锦3,王锦国1.  考虑地面沉降约束的地下水模拟优化管理模型[J]. 南京大学学报(自然科学版), 2016, 52(3): 470-478.
[12] 贺小桐1,叶淑君1*,于军2,吴吉春1,龚绪龙2. 基于固体颗粒速度场的三维地面沉降模拟[J]. 南京大学学报(自然科学版), 2015, 51(6): 1268-1278.
[13]  叶淑君 1 ** , 薛禹群 1 , 吴吉春 1 , 李勤奋 2 .  基于修正麦钦特模型的地面沉降模拟:以上海为例*

[J]. 南京大学学报(自然科学版), 2011, 47(3): 291-298.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘作国,陈笑蓉. 汉语句法分析中的论元关系模型研究[J]. 南京大学学报(自然科学版), 2019, 55(6): 1010 -1019 .
[2] 王冬丽,申俊峰,邱海成,杜佰松,李建平,聂潇,王业晗. 辽宁五龙金矿黄铁矿标型特征研究及深部找矿预测[J]. 南京大学学报(自然科学版), 2019, 55(6): 898 -915 .
[3] 刘显, 陈强路, 王小林, 丘靥, 杨源显. 方解石晶体定向性对水的拉曼光谱影响的实验评估[J]. 南京大学学报(自然科学版), 2020, 56(3): 297 -307 .
[4] 任睿,张超,庞继芳. 有限理性下多粒度q⁃RO模糊粗糙集的最优粒度选择及其在并购对象选择中的应用[J]. 南京大学学报(自然科学版), 2020, 56(4): 452 -460 .
[5] 李昭阳,龚安民,伏云发. 基于EEG脑网络下肢动作视觉想象识别研究[J]. 南京大学学报(自然科学版), 2020, 56(4): 570 -580 .
[6] 朱伟,张帅,辛晓燕,李文飞,王骏,张建,王炜. 结合区域检测和注意力机制的胸片自动定位与识别[J]. 南京大学学报(自然科学版), 2020, 56(4): 591 -600 .