南京大学学报(自然科学版) ›› 2019, Vol. 55 ›› Issue (3): 409–419.doi: 10.13232/j.cnki.jnju.2019.03.008

• 地面沉降 • 上一篇    下一篇

地铁盾构施工引发地面沉降三维流固全耦合数值模拟预测

徐成华1,2,谈金忠1,骆祖江2*,李 兆2   

  1. 1. 江苏省地质矿产局第一地质大队,南京,210041; 2. 河海大学地球科学与工程学院,南京,211100
  • 收稿日期:2019-03-05 出版日期:2019-06-01 发布日期:2019-05-31
  • 通讯作者: 骆祖江 E-mail:luozujiang@sina.com
  • 基金资助:
    江苏省地质矿产勘查局重点科研基金(dk2014ky02)

Three-dimensional fluid-solid full coupling numerical for simulating and predicting settlement caused by shield tunnelling in Metro

Xu Chenghua1,2,Tan Jinzhong1,Luo Zujiang2*,Li Zhao2   

  1. 1. The 1st Geological Brigade of Jiangsu Geology & Exploration Bureau,Nanjing,210041,China; 2. School of Earth Sciences and Engineering,Hohai University,Nanjing,211100,China;
  • Received:2019-03-05 Online:2019-06-01 Published:2019-05-31
  • Contact: Luo Zujiang E-mail:luozujiang@sina.com

摘要: 为了研究地下水影响下盾构施工引发的地面沉降,用比奥(Biot)固结理论,将土体本构关系推广到黏弹塑性,引入土体参数随着有效应力的动态变化关系,建立盾构施工引发地面沉降三维流固全耦合数学模型,并采用伽辽金加权余量法对数学方程进行离散,运用FORTRAN95语言研发有限元程序. 以成都地铁4号线一期工程玉双路站至双林路站盾构区间段为例,通过对比实测地面沉降量和计算沉降量验证模型可靠性,并模拟预测了盾构施工过程中引发的地面沉降和土体中孔隙水压力的变化特征,同时模拟土体参数动态变化特征. 结果表明:实测地面沉降量与计算值吻合较好,模型可靠,盾构隧道施工引发的地面沉降在左右线盾构隧道轴线之间较大,远离左右线盾构隧道轴线,地面沉降量减小,且随着盾构施工的进行,在开挖面处孔隙水压力降至最低,随着管片支护完成,孔隙水压力逐渐恢复.

关键词: 比奥固结理论, 盾构施工, 流固耦合, 地面沉降

Abstract: In order to predict the settlement caused by shield tunneling in metro under the influence of groundwater,a three-dimensional fluid-solid full coupling mathematical model was established. This work was based on the Biot’s consolidation theory. And the soil constitutive relation had extended to viscoelas to plasticity. Besides,the dynamic relationship between soil parameters and effective stress were taken into account. The finite element discretization equations were obtained by the Galerkin weighted residual method. The finite element method program of three-dimensional fluid-soil full coupling model of ground settlement caused by shield tunneling was developed by FORTRAN95. The shield-driven tunnels from Yushuang Road Station to Shuanglin Road Station in Chengdu Metro Line 4 were taken as an example. The finite element program was used to predict ground settlement and pore water pressure variation caused by shield tunneling. And the dynamic relationship of soil parameters was predicted. The results showed that the measured ground settlement was similar to the calculated value. The model was reliable. The ground settlement caused by shield tunnelling was larger at the centre of left axis and right axis. With the shield tunnelling,the pore water pressure at the cutting face decreased to the minimum. With the completion of segment lining,the pore water pressure gradually recovered.

Key words: Biot’s consolidation theory, shield tunneling, fluid-solid coupling, settlement

中图分类号: 

  • U455.43
[1] 吴怀娜,胡蒙达,许烨霜等. 管片局部渗漏对地铁隧道长期沉降的影响规律. 地下空间与工程学报,2009,5(S2):1608-1611.(Wu H N,Hu D M,Xu Y S,et al. Law of influence of segment leakage on long-term tunnel settlement. Chinese Journal of Underground Space and Engineering,2009,5(S2):1608-1611.)
[2] Dammyr . Pressurized TBM-shield tunneling under the subsidence sensitive grounds of Oslo:Possibilities and limitations. Tunnelling and Underground Space Technology,2017,66:47-55.
[3] 陈春来,赵城丽,魏 纲等. 基于Peck公式的双线盾构引起的土体沉降预测. 岩土力学,2014,35(8):2212-2218.(Chen C L,Zhao C L,Wei G,et al. Prediction of soil settlement induced by double-line shield tunnel based on Peck formula. Rock and Soil Mechanics,2014,35(8):2212-2218.)
[4] Verruijt A,Booker J R. Surface settlements due to deformation of a tunnel in an elastic half plane. Géotechnique,1996,46(4):753-756.
[5] Gonzlez C,Sagaseta C. Patterns of soil deformations around tunnels. Application to the extension of Madrid Metro. Computers and Geotechnics,2001,28:445-468.
[6] Do N A,Dias D,Oreste P,et al. Three-dimensional numerical simulation of a mechanized twin tunnels in soft ground. Tunnelling and Underground Space Technology,2014,42:40-51.
[7] Do N A,Dias D,Oreste P. 3d numerical investigation of mechanized twin tunnels in soft ground-influence of lagging distance between two tunnel faces. Engineering Structures,2016,109:117-125.
[8] 郑 刚,杜一鸣,刁 钰等. 基坑开挖引起邻近既有隧道变形的影响区研究. 岩土工程学报,2016,38(4):599-612.(Zheng G,Du Y M,Diao Y,et al. Influenced zones for deformation of existing tunnels adjacent to excavations. Chinese Journal of Geotechnical Engineering,2016,38(4):599-612.)
[9] Bouayad D,Emeriault F. Modeling the relationship between ground surface settlements induced by shield tunneling and the operational and geological parameters based on the hybrid PCA/ANFIS method. Tunnelling and Underground Space Technology,2017,68:142-152.
[10] 宋锦虎,缪林昌,胡 等. 地下水对盾构开挖面上方土拱效应影响的试验研究. 土木工程学报,2014,47(2):109-120.(Song J H,Miao L C,Hu B,et al. Experimental study on influence of ground water on the soil arching above the tunnelling face. China Civil Engineering Journal,2014,47(2):109-120.)
[11] 贺少辉,张淑朝,李承辉等. 砂卵石地层高水压条件下盾构掘进喷涌控制研究. 岩土工程学报,2017,39(9):1583-1590.(He S H,Zhang S C,Li C H,et al. Blowout control during EPB shield tunnelling in sandy pebble stratum with high groundwater pressure. Chinese Journal of Geotechnical Engineering,2017,39(9):1583-1590.) 
[12] 贾善坡,陈卫忠,于洪丹等. 渗流-应力耦合作用下深埋黏土岩隧道盾构施工特性及其动态行为研究. 岩石力学与工程学报,2012,31(S1):2681-2691.(Jia S P,Chen W Z,Yu H D,et al. Study of construction characteristics and dynamic behavior of deep clay stone during shield tunneling under seepage-stress coupling effect. Chinese Journal of Rock Mechanics and Engineering,2012,31(S1):2681-2691.)
[13] 骆祖江,李会中,付延玲. 第四纪松散沉积层地下水渗流与地面沉降控制数值模拟. 北京:科学出版社,2009,33-34.(Luo Z J,Li H Z,Fu Y L. Numerical simulation of groundwater seepage and land subsidence control in Quaternary unconsolidated sediments. Beijing:Science Press,2009,33-34.)
[14] 付延玲,骆祖江,廖 翔等. 高层建筑引发地面沉降模拟预测三维流固全耦合模型. 吉林大学学报(地球科学版),2016,46(6):1781-1789.(Fu Y L,Luo Z J,Liao X,et al. A Three-dimensional full coupling model to simulate and predict land subsidence caused by high-rise building. Journal of Jilin University(Earth Science Edition),2016,46(6):1781-1789.)
[15] 冉启全,李士伦. 流固耦合油藏数值模拟中物性参数动态模型研究. 石油勘探与开发,1997,24(3):61-65,100.(Ran Q Q,Li S L. Study on dynamic models of reservoir parameters in the coupled simulation of Multiphase flow and reservoir deformation. Petroleum Exploration and Development,1997,24(3):61-65,100.)
[16] 田 杰,刘先贵,尚根华. 基于流固耦合理论的套损力学机理分析. 水动力学研究与进展,2005,20(2):221-225.(Tian J,Liu X G,Shang G H. Casing damage mechanism based on theory of fluid-solid coupling flow through underground rock. Journal of Hydrodynamics,2005,20(2):221-225.)
[17] 罗 刚,张建民. 邓肯-张模型和沈珠江双屈服面模型的改进. 岩土力学,2004,25(6):887-890.(Luo G,Zhang J M. Improvement of Duncan-Chang nonlinear model and Shen Zhujiang’s elastoplastic model for granular soils. Rock and Soil Mechanics,2004,25(6):887-890.)
[1] 杨 蕴, 宋 健, 朱 琳, 吴剑锋, 王锦国. 基于KELM地面沉降替代模型的地下水多目标管理模型研究[J]. 南京大学学报(自然科学版), 2019, 55(3): 349-360.
[2] 董少春,种亚辉,胡 欢,黄璐璐. 基于时序InSAR的常州市2015-2018年地面沉降监测[J]. 南京大学学报(自然科学版), 2019, 55(3): 370-380.
[3] 曹 群,陈蓓蓓,宫辉力,周超凡,罗 勇,高明亮,王 旭,史 珉,赵笑笑,左俊杰. 基于SBAS和IPTA技术的京津冀地区地面沉降监测[J]. 南京大学学报(自然科学版), 2019, 55(3): 381-391.
[4] 吕海敏,沈水龙,严学新,史玉金,许烨霜. 上海地面沉降对轨道交通安全运营风险评估[J]. 南京大学学报(自然科学版), 2019, 55(3): 392-400.
[5] 叶 超,田 芳,罗 勇,王新惠,田苗壮,崔文君,王立发,雷坤超. 北京地面沉降控制区划及防控措施[J]. 南京大学学报(自然科学版), 2019, 55(3): 440-448.
[6] 严学新,杨天亮,林金鑫,黄鑫磊,王建秀. 超深基坑减压降水引发地面沉降的估算及其影响因素分析[J]. 南京大学学报(自然科学版), 2019, 55(3): 401-408.
[7] 杨建民,于佳卉,霍王文. 区域性地面沉降形状参数c1与c2间线性关系研究[J]. 南京大学学报(自然科学版), 2019, 55(3): 420-428.
[8] 毛 磊,张 岩,刘明遥,龚绪龙,于 军,叶淑君. 江苏沿海地区地面沉降约束下的地下水可采资源量评价[J]. 南京大学学报(自然科学版), 2019, 55(3): 429-439.
[9] 罗 跃,严学新,杨天亮,叶淑君,吴吉春. 上海陆域地区地下水采灌与地面沉降的时空特征[J]. 南京大学学报(自然科学版), 2019, 55(3): 449-457.
[10] 卢 毅,于 军,龚绪龙,王宝军,魏广庆,季峻峰. 基于DFOS的连云港第四纪地层地面沉降监测分析[J]. 南京大学学报(自然科学版), 2018, 54(6): 1114-1123.
[11]  杨 蕴1,朱 琳2*,林 锦3,王锦国1.  考虑地面沉降约束的地下水模拟优化管理模型[J]. 南京大学学报(自然科学版), 2016, 52(3): 470-478.
[12] 宋忠长1,2,张 宇1,2* ,魏 翀1,2. 白鳍豚超声波束形成的流固耦合机理[J]. 南京大学学报(自然科学版), 2015, 51(6): 1240-1246.
[13] 贺小桐1,叶淑君1*,于军2,吴吉春1,龚绪龙2. 基于固体颗粒速度场的三维地面沉降模拟[J]. 南京大学学报(自然科学版), 2015, 51(6): 1268-1278.
[14]  叶淑君 1 ** , 薛禹群 1 , 吴吉春 1 , 李勤奋 2 .  基于修正麦钦特模型的地面沉降模拟:以上海为例*

[J]. 南京大学学报(自然科学版), 2011, 47(3): 291-298.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩明鸣, 郭虎升, 王文剑. 面向非平衡多分类问题的二次合成QSMOTE方法[J]. 南京大学学报(自然科学版), 2019, 55(1): 1 -13 .