南京大学学报(自然科学版) ›› 2020, Vol. 56 ›› Issue (3): 366–381.doi: 10.13232/j.cnki.jnju.2020.03.006

• • 上一篇    下一篇

东营凹陷沙河街组泥页岩中正丙基胆甾烷与异海绵烷的研究:硫循环对有机质富集的影响

许汇源1,2,3,4(),侯读杰3(),刘全有1,2   

  1. 1.页岩油气富集机理与有效开发国家重点实验室,北京,100083
    2.中国石油化工股份有限公司石油勘探开发研究院,北京,100083
    3.中国地质大学(北京),能源学院,北京,100083
    4.Department of Earth and Environmental Sciences, Macquarie University, Sydney 2109, Australia
  • 收稿日期:2020-03-03 出版日期:2020-05-30 发布日期:2020-06-03
  • 通讯作者: 许汇源,侯读杰 E-mail:xuhuiyuan.syky@sinopec.com
  • 基金资助:
    中国博士后科学基金(2019M650968);国家自然科学基金(41472108)

Study on n⁃propylcholestane and isorenieratane in the Shahejie black shales: Sulfur control on organic matter enrichment

Huiyuan Xu1,2,3,4(),Dujie Hou3(),Simon C George4,Quanyou Liu1,2   

  1. 1.State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development,Beijing,100083,China
    2.Petroleum Exploration and Production Research Institute,SINOPEC,Beijing,100083,China
    3.School of Energy Resources,China University of Geosciences,Beijing,100083,China
    4.Department of Earth and Environmental Sciences,Macquarie University,Sydney 2109,Australia
  • Received:2020-03-03 Online:2020-05-30 Published:2020-06-03
  • Contact: Huiyuan Xu,Dujie Hou E-mail:xuhuiyuan.syky@sinopec.com

摘要:

中国东部陆相渤海湾盆地东营凹陷古近系沙河街组油页岩中有机质的富集机制一直是研究热点,但关于异养生物及硫循环对有机质富集过程影响的研究较少.通过有机地球化方法对东营凹陷沙河街组第三、四段富有机质烃源岩进行精细研究,认为伴随着明显的水体分层,藻类勃发进一步加剧了底水缺氧的条件,海水带来了丰富的硫酸盐促进了强烈的细菌硫还原(Bacterial Sulfur Reduction, BSR)作用,将这种缺氧条件进一步扩展到水柱上部形成透光层缺氧(Photic Zone Euxinia, PZE),而PZE有利于光合自养绿硫菌的剧烈活动.强烈的BSR作用及间歇性的PZE控制东营凹陷古湖盆中藻类等水生生物的组成,原核细菌及海相金藻类对有机质富集有一定贡献.通过分析海相藻类生物标志物C30 24?正丙基胆甾烷和透光层缺氧生物标志物异海绵烷与有机碳丰度的关系,研究认为在相对丰富的外源硫酸盐输入、厌氧异养细菌作用、光能自养细菌作用和透光层缺氧条件下形成的硫循环,对东营古湖盆沙河街组烃源岩有机质的富集起主要控制作用.

关键词: 渤海湾盆地, 东营凹陷, 正丙基胆甾烷, 异海绵烷, 透光层缺氧, 海 侵, 硫循环

Abstract:

The mechanism of orgnaic matter enrichment in the Shahejie Formation,Dongying Depression,Bohai Bay Basin,China has long been studied. However,controls of heterotrophic microorganism and sulfur cylce on the process of organic matter accumulation are seldom discussed. Here we present an organic geochemical study of black shales in the third and fourth member of the Shahejie Formation. Persistent water stratification,algal bloom and allothigenous (sea water) sulfate promote significant bacterial sulfate reduction (BSR),extending to photic zone euxinia (PZE). The PZE favors the activities of green/purple sulfur bacteria. Intense BSR and episodic PZE control the community structure of aquatic microorganism in the palaeolake,prokaryotic and marine Pelagophyte/Chrysophyte contribute to organic matter input. The relationship of total organic matter and C30 24?n?propylcholestane and isorenieratane suggests that sulfur cycle in the presence of allothigenous sulfate,anaerobic heterotrophic bacterial reworking and PZE is the key to the organic matter enrichment in the Shahejie Formation,Dongying Depression.

Key words: Bohai Bay Basin, Dongying Depression, n?propylcholestane, isorenieratane, photic zone euxinia, marine incursion, sulfur cycle

中图分类号: 

  • TE122.1+13

图1

东营凹陷位置及取样点"

图2

东营凹陷地层柱状图(古环境据文献[6])"

表1

研究区样品有机地球化学参数"

样品编号C1C3H2N1L1L3L5F4F8F10F12F16FS1FS2T1T2
洼陷博兴博兴牛庄牛庄牛庄牛庄牛庄民丰民丰民丰民丰民丰民丰民丰民丰民丰
井名纯372纯372河130牛28莱110莱110莱110丰112丰112丰112丰112丰112丰深1丰深1坨73坨73
层段沙四上沙四上沙三下沙三下沙四上沙四上沙四上沙三中沙三中沙三下沙三下沙四上沙三下沙四上沙三下沙四上
深度(m)2571.52583.03235.33282.42747.72767.52779.83122.03135.83337.73340.53430.73217.93690.43158.03269.4
TOC(%)6.077.445.931.9413.464.006.1514.95.167.356.172.524.273.715.34
EOM (mg·g-1)6.3415.0111.313.975.675.497.8219.97.025.7629.211.44.183.6012.114.6
CPI22-320.870.831.111.141.091.020.951.201.241.151.051.021.091.041.061.05
Pr/Ph0.420.341.051.241.530.700.801.031.200.650.430.521.000.710.640.70
TAR2.853.040.750.580.321.182.390.700.782.162.570.980.740.531.221.64
C27 ααα 20R (%)34.939.937.738.142.328.133.955.240.028.426.026.334.923.130.126.3
C28 ααα 20R (%)25.826.026.224.920.930.325.518.922.123.234.428.632.123.626.521.9
C29 ααα 20R (%)39.334.136.137.036.841.640.525.937.948.439.645.133.053.243.451.7
Ts/(Ts+Tm)0.310.290.480.490.310.350.300.260.320.380.340.470.400.680.370.47
35/(35+34)0.570.590.370.410.490.500.450.380.380.310.410.360.360.380.390.36
O/H0.100.060.020.020.070.090.090.030.040.060.050.040.050.070.060.05
G/H0.530.410.050.040.190.380.110.090.050.120.170.330.050.190.230.18
(19+20)/230.550.420.670.760.970.540.520.630.710.520.470.641.061.690.820.78
23/211.921.881.381.461.131.511.141.401.481.211.401.201.270.891.241.15
St/H2.704.220.230.150.611.542.350.390.370.561.131.930.241.350.980.77
DBT/P0.450.270.110.050.290.230.310.150.170.040.060.020.020.010.060.02
AIR5.232.013.989.023.763.234.043.132.431.112.412.061.94
Iso/C181.904.991.461.743.813.5349.24.243.6643.55.762.952.39
DSI0.860.810.410.460.890.860.880.760.820.540.480.380.390.310.440.37
4MSI0.580.690.660.300.750.530.660.590.640.630.520.610.250.560.510.52
C29 20S0.190.220.590.510.190.150.150.240.310.480.470.530.460.590.520.55
C30(%)10.143.001.656.413.502.181.88
C30/29(%)48.66.853.8817.77.845.814.18

图3

东营凹陷沙河街组典型样品m/z 57质量色谱图(数字表示正构烷烃碳数)"

图4

Pr/Ph与G/H(a),St/H与G/H(b),DBT/P与AIR(c)和TOC与Iso/C18(d)的二元相关图"

图5

东营凹陷沙河街组典型样品m/z 414→217质量色谱图,显示C30甾烷的相对分布特征及变化.百分含量为m/z 414→217转换相对于m/z 400→217和m/z 414→231转换的相对信号强度(根据信号强度,24?n?正丙基胆甾烷在AGSO、F4、F16样品中完整检出,在FS2样品中痕量检出,在L5和N1样品中未检出)"

图6

东营凹陷沙河街组L5样品m/z 414→217与m/z 414→231质量色谱图"

图7

东营凹陷沙河街组典型样品m/z 133质量色谱图检测出芳基类异戊二烯和异海绵烷"

图8

不同地区样品的AIR与Pr/Ph二元相关图(不同地区样品通过颜色标注)"

图9

东营凹陷沙河街组沉积期硫循环示意图(单质硫(S0)可被硫杆菌Thiobacillus氧化至SO42-,也可被氧化乙酸脱硫单胞菌Desulfuromonas acetoxidans还原至H2S)"

1 Demaison G J,Moore G T. Anoxic environments and oil source bed genesis. Organic Geochemistry,1980,2(1):9-31.
2 Pedersen T F,Calvert S E. Anoxia vs. Productivity:What controls the formation of organic?carbon?rich sediments and sedimentary rocks. AAPG Bulletin,1990,74(4):454-466.
3 Tyson R V,Pearson T H. Modern and ancient continental shelf anoxia:an overview. Arctic and Alpine Research,1991,58(1):1-24.
4 Kelts K. Environments of deposition of lacustrine petroleum source rocks:an introduction. Geological Society,London,Special Publications,1988,40(1):3-26.
5 Valero?Garcés B L,Grosjean M,Kelts K,et al. Holocene lacustrine deposition in the Atacama Altiplano:facies models,climate and tectonic forcing. Palaeogeography,Palaeoclimatology,Palaeoecology,1999,151(1-3):101-125.
6 Wang G L,Wang T G,Simoneit B R T,et al. The distribution of molecular fossils derived from dinoflagellates in Paleogene lacustrine sediments (Bohai Bay Basin,China). Organic Geochemistry,2008,39(11):1512-1521.
7 Zhang L Y,Liu Q,Zhu R F,et al. Source rocks in mesozoic?cenozoic continental rift basins,east china:a case from DONGYING depression,Bohai Bay basin. Organic Geochemistry,2009,40(2):229-242.
8 Donovan D T,Jones E J W. Causes of world?wide changes in sea level. Journal of the Geological Society,1979,136(2):187-192.
9 Zhang T W,Zhang M J,Bai B J,et al. Origin and accumulation of carbon dioxide in the Huanghua depression,Bohai Bay Basin,China. AAPG Bulletin,2008,92(3):341-358.
10 Li S M,Pang X Q,Li M W,et al. Geochemistry of petroleum systems in the Niuzhuang South Slope of Bohai Bay Basin?part 1:source rock characterization. Organic Geochemistry,2003,34(3):389-412.
11 Bao J P,Li M W. Unprecedented occurrence of novel C26?C28 21?norcholestanes and related triaromatic series in evaporitic lacustrine sediments. Organic Geochemistry,2001,32(8):1031-1036.
12 Wang G L,Wang T G,Simoneit B R T,et al. Investigation of hydrocarbon biodegradation from a downhole profile in Bohai Bay Basin:implications for the origin of 25?norhopanes. Organic Geochemistry,2013,55:72-84.
13 Zhu D Y,Jin Z J,Hu W X,et al. Effect of igneous activity on hydrocarbon source rocks in Jiyang Sub?basin,Eastern China. Journal of Petroleum Science and Engineering,2007,59(3-4):309-320.
14 张林晔.湖相烃源岩研究进展.石油实验地质,2008,30(6):591-595.
15 Chen Z H,Huang W,Liu Q,et al. Geochemical characteristics of the Paleogene shales in the Dongying depression,eastern China. Marine and Petroleum Geology,2016,73:249-270.
16 Cranwell P A. Organic geochemistry of Cam Loch (Sutherland) sediments. Chemical Geology,1977,20:205-221.
17 Philp R P. Petroleum formation and occurrence. Eos,Transactions American Geophysical Union,1985,66(37):643-644.
18 Tegelaar E W,Matthezing R M,Jansen J B H,et al. Possible origin of n?alkanes in high?wax crude oils. Nature,1989,342(6249):529-531.
19 Eglinton G,Hamilton R J. Leaf epicuticular waxes. Science,1967,156(3780):1322-1335.
20 Ficken K J,Li B,Swain D L,et al. An n?alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry,2000,31(7-8):745-749.
21 Derenne S,Largeau C,Casadevall E,et al. Comparison of torbanites of various origins and evolutionary stages. Bacterial contribution to their formation. Causes of the lack of botryococcane in bitumens. Organic Geochemistry,1988,12(1):43-59.
22 Huang H P,Zheng Y B,Zhang Z W,et al. Lacustrine biomass:an significant precursor of high wax oil. Chinese Science Bulletin,2003,48(18):1987-1994.
23 Feng Z H,Fang W,Zhang J H,et al. Distribution and significance of C40+ alkanes in the extracts of Cretaceous source rocks from the Songliao Basin. Science in China Series D:Earth Sciences,2007,50(10):1510?1520.
24 Riboulleau A,Schnyder J,Riquier L,et al. Environmental change during the early cretaceous in the purbeck?type durlston bay section (Dorset,Southern England):a biomarker approach. Organic Geochemistry,2007,38(11):1804-1823.
25 Bechtel A,Jia J L,Strobl S A I,et al. Palaeoenvironmental conditions during deposition of the Upper Cretaceous oil shale sequences in the Songliao Basin (NE China):implications from geochemical analysis. Organic Geochemistry,2012,46:76-95.
26 Summons R E,Bird L R,Gillespie A L,et al. Lipid biomarkers in ooids from different locations and ages:evidence for a common bacterial flora. Geobiology,2013,11(5):420-436.
27 Goossens H,De Leeuw J W,Schenck P A,et al. Tocopherols as likely precursors of pristane in ancient sediments and crude oils. Nature,1984,312(5993):440-442.
28 Volkman J K,Maxwell J R. Acyclic isoprenoids as biological markers. Methods in Geochemistry and Geophysics,1986,24:1-42.
29 Ten Haven H L,De Leeuw J W,Rullk?tter J,et al. Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator. Nature,1987,330(6149):641-643.
30 Didyk B M,Simoneit B R T,Brassell S C,et al. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature,1978,272(5650):216-222.
31 Otto A,Wilde V. Sesqui?,di?,and triterpenoids as chemosystematic markers in extant conifers:a review. The Botanical Review,2001,67(2):141-238.
32 Ourisson G,Albrecht P,Rohmer M. The hopanoids:palaeochemistry and biochemistry of a group of natural products. Pure and Applied Chemistry,1979,51(4):709-729.
33 Damsté J S S,Schouten S. Is there evidence for a substantial contribution of prokaryotic biomass to organic carbon in Phanerozoic carbonaceous sediments? Organic Geochemistry,1997,26(9-10):517-530.
34 Damsté J S S,Kenig F,Koopmans M P,et al. Evidence for gammacerane as an indicator of water column stratification. Geochimica et Cosmochimica Acta,1995,59(9):1895-1900.
35 Peters K E,Walters C C,Moldowan J M. The biomarker guide. The 2nd Edition. Cambridge:Cambridge University Press,2005,527-530.
36 Wang G L,Li S,Wang T G,et al. Applications of molecular fossils in lacustrine stratigraphy. Chinese Journal of Geochemistry,2010,29(1):15-20.
37 Connan J,Bouroullec J,Dessort D,et al. The microbial input in carbonate?anhydrite facies of a sabkha palaeoenvironment from Guatemala:a molecular approach. Organic Geochemistry,1986,10(1-3):29-50.
38 Clark J P,Philp R P. Geochemical characterization of evaporite and carbonate depositional environments and correlation of associated crude oils in the Black Creek Basin,Alberta. Bulletin of Canadian Petroleum Geology,1989,37(4):401-416.
39 Peters K E,Moldowan J M. Effects of source,thermal maturity,and biodegradation on the distribution and isomerization of homohopanes in petroleum. Organic Geochemistry,1991,17(1):47-61.
40 Huang W Y,Meinschein W G. Sterols as ecological indicators. Geochimica et Cosmochimica Acta,1979,43(5):739-745.
41 Grantham P J,Wakefield L L. Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological time. Organic Geochemistry,1988,12(1):61-73.
42 Volkman J K,Barrett S M,Blackburn S I,et al. Microalgal biomarkers:a review of recent research developments. Organic Geochemistry,1998,29(5-7):1163-1179.
43 Volkman J K. Sterols and other triterpenoids:source specificity and evolution of biosynthetic pathways. Organic Geochemistry,2005,36(2):139-159.
44 Moldowan J M,Seifert W K,Gallegos E J. Relationship between petroleum composition and depositional environment of petroleum source rocks. AAPG Bulletin,1985,69(8):1255-1268.
45 Mackenzie A S. Applications of biological markers in petroleum geochemistry∥Brooks J,Welte D H. Advances in Petroleum Geochemistry. London:Academic Press,1984:115-214.
46 Liu C L,Wang P X. The role of algal blooms in the formation of lacustrine petroleum source rocks ? Evidence from Jiyang depression,Bohai Gulf Rift Basin,eastern China. Palaeogeography,Palaeoclimatology,Palaeoecology,2013,388:15-22.
47 Raederstorff D,Rohmer M. Sterols of the unicellular algae Nematochrysopsis roscoffensis and Chrysotila lamellosa:isolation of (24E)?24?n?propylidenecholesterol and 24?n?propylcholesterol. Phytochemistry,1984,23(12):2835-2838.
48 Moldowan J M,Fago F J,Lee C Y,et al. Sedimentary 24?n?propylcholestanes,molecular fossils diagnostic of marine algae. Science,1990,247(4940):309-312.
49 Grosjean E,Love G D,Stalvies C,et al. Origin of petroleum in the Neoproterozoic?Cambrian South Oman salt basin. Organic Geochemistry,2009,40(1):87-110.
50 Volkman J K. Sterols in microorganisms. Applied Microbiology and Biotechnology,2003,60(5):495-506.
51 McCaffrey M A,Moldowan J M,Lipton P A,et al. Paleoenvironmental implications of novel C30 steranes in Precambrian to Cenozoic age petroleum and bitumen. Geochimica et Cosmochimica Acta,1994,58(1):529-532.
52 Love G D,Grosjean E,Stalvies C,et al. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature,2009,457(7230):718-721.
53 Moldowan J M. C30 steranes,novel markers for marine petroleums and sedimentary rocks. Geochimica et Cosmochimica Acta,1984,48(12):2767-2768.
54 Cao H R,Hu J F,Peng P A,et al. Paleoenvironmental reconstruction of the Late Santonian Songliao paleo?lake. Palaeogeography,Palaeoclimatology,Palaeoecology,2016,457:290-303.
55 Hu J F,Peng P A,Liu M Y,et al. Seawater incursion events in a Cretaceous paleo?lake revealed by specific marine biological markers. Scientific Reports,2015,5:9508.
56 Peters K E,Clutson M J,Robertson G. Mixed marine and lacustrine input to an oil?cemented sandstone breccia from Brora,Scotland. Organic Geochemistry,1999,30(4):237-248.
57 Aboglila S,Grice K,Trinajstic K,et al. The significance of 24?norcholestanes,4?methylsteranes and dinosteranes in oils and source?rocks from East Sirte Basin (Libya). Applied Geochemistry,2011,26(9-10):1694-1705.
58 Hughes W B,Holba A G,Dzou L I P. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochimica et Cosmochinica Acta. 1995,59(17):3581-3598.
59 Wang G L,Zhang Q,Yang X F,et al. A set of source?and age?diagnostic biomarkers discovered in the marine oils. Acta Geologica Sinica English Edition,2017,91(S1):285-286.
60 Sosrowidjojo I B,Alexander R,Kagi R I. The biomarker composition of some crude oils from Sumatra. Organic Geochemistry,1994,21(3-4):303-312.
61 Peters K E,Kontorovich A E,Huizinga B J,et al. Multiple oil families in the West Siberian basin. AAPG Bulletin,1994,78(6):893-909.
62 McKirdy D M,Summons R,Padley D,et al. Molecular fossils in coastal bitumens from southern Australia:signatures of precursor biota and source rock environments. Organic Geochemistry,1994,21(3-4):265-286.
63 Burwood R,Leplat P,Mycke B,et al. Rifted margin source rock deposition:a carbon isotope and biomarker study of a West African Lower Cretaceous "Lacustrine" Section. Organic Geochemistry,1992,19(1-3):41-52.
64 Harris N B,Freeman K H,Pancost R D,et al. The character and origin of lacustrine source rocks in the lower cretaceous synrift section,Congo Basin,west Africa. AAPG Bulletin,2004,88(8):1163-1184.
65 Harris N B,Freeman K H,Pancost E D,et al. Patterns of organic?carbon enrichment in a lacustrine source rock in relation to paleo–lake level,Basin Congo ,West Africa∥Harris N B. The Deposition of Organic?Carbon?Rich Sediments:Models,Mechanisms,and Consequences. Tulsa,OK,USA:SEPM Society for Sedimentary Geology,2005. 103-123.
66 Mohriak W U,Mello M R,Dewey J F,et al. Petroleum geology of the Campos Basin,offshore Brazil. Geological Society,London,Special Publications,1990,50(1):119-141.
67 Chen J H,Summons R E. Complex patterns of steroidal biomarkers in Tertiary lacustrine sediments of the Biyang Basin,China. Organic Geochemistry,2001,32(1):115-126.
68 Rohrssen M,Gill B C,Love G D. Scarcity of the C30 sterane biomarker,24?n?propylcholestane,in lower Paleozoic marine paleoenvironments. Organic Geochemistry,2015,80:1-7.
69 袁波,陈世悦,袁文芳等. 济阳坳陷沙河街组锶硫同位素特征. 吉林大学学报(地球科学版),2008,38(4):613-617.
Yuan B,Chen S Y,Yuan W F,et al. Characteristics of strontium and sulfur isotopes in Shahejie Formation of Jiyang depression. Journal of Jilin University (Earth Science Edition),2008,38(4):613-617.
70 Koopmans M P,Schouten S,Kohnen M E L,et al. Restricted utility of aryl isoprenoids as indicators for photic zone anoxia. Geochimica et Cosmochimica Acta,1996,60(23):4873-4876.
71 Grice K,Schaeffer P,Schwark L,et al. Molecular indicators of palaeoenvironmental conditions in an immature Permian shale (Kupferschiefer,Lower Rhine Basin,north?west Germany) from free and S?bound lipids. Organic Geochemistry,1996,25(3-4):131-147.
72 Grice K,Schouten S,Peters K E,et al. Molecular isotopic characterisation of hydrocarbon biomarkers in Palaeocene?Eocene evaporitic,lacustrine source rocks from the Jianghan Basin,China. Organic Geochemistry,1998,29(5-7):1745-1764.
73 Brocks J J,Okenane Schaeffer P. ,a biomarker for purple sulfur bacteria (Chromatiaceae),and other new carotenoid derivatives from the1640Ma barney creek formation. Geochimica et Cosmochimica Acta,2008,72(5):1396-1414.
74 Schwark L,Frimmel A. Chemostratigraphy of the Posidonia black shale,SW?Germany:II. Assessment of extent and persistence of photic?zone anoxia using aryl isoprenoid distributions. Chemical Geology,2004,206(3-4):231-248.
75 Melendez I,Grice K,Trinajstic K,et al. Biomarkers reveal the role of photic zone euxinia in exceptional fossil preservation:an organic geochemical perspective. Geology,2013,41(2):123-126.
76 Cai C F,Worden R H,Wolff G A,et al. Origin of sulfur rich oils and H2S in tertiary lacustrine sections of the Jinxian Sag,Bohai Bay Basin,China. Applied Geochemistry,2005,20(7):1427-1444.
77 Berner R A,Raiswell R. C/S method for distinguishing freshwater from marine sedimentary rocks. Geology,1984,12(6):365-368.
78 Canfield D E. Biogeochemistry of sulfur isotopes. Reviews in Mineralogy and Geochemistry,2001,43(1):607-636.
79 Meyer K M,Kump L R. Oceanic euxinia in Earth history:causes and consequences. Annual Review of Earth and Planetary Sciences,2008,36:251-288.
80 Damst'e J S S,Rijpstra W I C,Dalen A C K V,et al. Quenching of labile functionalised lipids by inorganic sulphur species:evidence for the formation of sedimentary organic sulphur compounds at the early stages of diagenesis. Geochimica et Cosmochimica Acta,1989,53(6):1343-1355.
81 Zerkle A L,Farquhar J,Johnston D T,et al. Fractionation of multiple sulfur isotopes during phototrophic oxidation of sulfide and elemental sulfur by a green sulfur bacterium. Geochimica et Cosmochimica Acta,2009,73(2):291-306.
82 Cai C F,Zhang C M,Cai L L,et al. Origins of Palaeozoic oils in the Tarim basin:evidence from sulfur isotopes and biomarkers. Chemical Geology,2009,268(3-4):197-210.
83 Holser W T,Kaplan I R. Isotope geochemistry of sedimentary sulfates. Chemical Geology,1966,1:93-135.
84 Miller K G,Kominz M A,Browning J V,et al. The phanerozoic record of global sea?level change. Science,2005,310(5752):1293-1298.
85 Miller K G,Browning J V,Aubry M P,et al. Eocene?Oligocene global climate and sea?level changes:St. Stephens Quarry,Alabama. GSA Bulletin,2008,120(1-2):34-53.
86 Haq B U,Hardenbol J,Vail P R,et al. Mesozoic and Cenozoic chronostratigraphy and cycles of sea?level change∥Wilgus C K,Hastings B S,Posamentier H,et al. Sea?Level Changes:An Integrated Approach. Tulsa,OK,USA:SEPM Society for Sedimentary Geology,1988,42:71-108.
87 Haq B U,Hardenbol J,Vail P R. Chronology of fluctuating sea levels since the Triassic. Science,1987,235(4793):1156-1167.
88 Wang D H,Lu S C,Han S,et al. Eocene prevalence of monsoon?like climate over Eastern China reflected by hydrological dynamics. Journal of Asian Earth Sciences,2013,62:776-787.
89 Emanuel K A. The dependence of hurricane intensity on climate. Nature,1987,326(6112):483-485.
90 Houghton J T,Filho L G M,Callander B A,et al. Climate Change 1995:The science of climate change:contribution of Working Group I to the second assessment report of the intergovernmental panel on climate change. Cambridge:Cambridge University Press,1996.
91 Killops S D,Killops V J. Introduction to organic geochemistry. The 2nd Edition. Oxford:Wiley?Blackwell,2005,92-99.
92 Long J A,Trinajstic K. The late devonian gogo formation l?gerstatte of western Australia:exceptional early vertebrate preservation and diversity. Annual Review of Earth and Planetary Sciences,2010,38:255-279.
93 Hao F,Zhou X H,Zhu Y M,et al. Lacustrine source rock deposition in response to co?evolution of environments and organisms controlled by tectonic subsidence and climate,Bohai Bay Basin,China. Organic Geochemistry,2011,42(4):323-339.
[1]  张雪芬1,陆现彩1**,刘庆2,张林哗2,李娟1,马野牧1,张立虎1
.  东营凹陷沙河街组砂岩中自生高岭石特征及其成因探讨*[J]. 南京大学学报(自然科学版), 2013, 49(3): 331-342.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 缪长健, 施斌, 郑兴, 王湛, 魏广庆. 海上超长PHC管桩BOFDA内力测试[J]. 南京大学学报(自然科学版), 2018, 54(6): 1057 -1063 .
[2] 王 倩,聂秀山,耿蕾蕾,尹义龙. D2D通信中基于Q学习的联合资源分配与功率控制算法[J]. 南京大学学报(自然科学版), 2018, 54(6): 1183 -1192 .
[3] 韩明鸣, 郭虎升, 王文剑. 面向非平衡多分类问题的二次合成QSMOTE方法[J]. 南京大学学报(自然科学版), 2019, 55(1): 1 -13 .
[4] 肖梦君, 吴俊仙, 张 娜, 陈 昕, 饶泽兵, 陈允梓. VDR基因肠上皮特异性敲除小鼠的构建及其对炎症性肠病的影响[J]. 南京大学学报(自然科学版), 2019, 55(2): 332 -338 .
[5] 王飞永, 彭建兵, 卢全中, 黄强兵, 孟振江, 乔建伟. 渭河盆地地裂缝同生机制研究[J]. 南京大学学报(自然科学版), 2019, 55(3): 339 -348 .
[6] 曹 群,陈蓓蓓,宫辉力,周超凡,罗 勇,高明亮,王 旭,史 珉,赵笑笑,左俊杰. 基于SBAS和IPTA技术的京津冀地区地面沉降监测[J]. 南京大学学报(自然科学版), 2019, 55(3): 381 -391 .
[7] 吕海敏,沈水龙,严学新,史玉金,许烨霜. 上海地面沉降对轨道交通安全运营风险评估[J]. 南京大学学报(自然科学版), 2019, 55(3): 392 -400 .
[8] 董越男,吴兵党. 铁离子对紫外/乙酰丙酮法降解甲基橙的影响[J]. 南京大学学报(自然科学版), 2019, 55(3): 504 -510 .
[9] 钱付兰, 黄鑫, 赵姝, 张燕平. 基于路径相互关注的网络嵌入算法[J]. 南京大学学报(自然科学版), 2019, 55(4): 573 -580 .
[10] 何轶凡, 邹海涛, 于化龙. 基于动态加权Bagging矩阵分解的推荐系统模型[J]. 南京大学学报(自然科学版), 2019, 55(4): 644 -650 .