南京大学学报(自然科学版) ›› 2019, Vol. 55 ›› Issue (3): 339–348.doi: 10.13232/j.cnki.jnju.2019.03.001

所属专题: 测试专题

• 地面沉降 •    下一篇

渭河盆地地裂缝同生机制研究

王飞永1,2,彭建兵1,2*,卢全中1,2,黄强兵1,2,孟振江1,2,乔建伟3,4   

  1. 1.长安大学地质工程与测绘学院,西安,710054; 2.西部矿产资源与地质工程教育部重点实验室,西安,710054; 3.机械工业勘察设计研究院有限公司,西安,710043; 4.陕西省特殊岩土性质与处理重点实验室,西安,710043
  • 收稿日期:2019-02-03 出版日期:2019-06-01 发布日期:2019-05-31
  • 通讯作者: 彭建兵 E-mail:dicexy_1@126.com
  • 基金资助:
    国家自然科学基金(41790441,41807234,DD20160264)

The study on the syngenetic mechanism of ground fissures:a case from the Weihe Basin

Wang Feiyong1,2,Peng Jianbing1,2*,Lu Quanzhong1,2,Huang Qiangbing1,2,Meng Zhenjiang1,2,Qiao Jianwei3,4   

  1. 1.Department of Geological Engineering,Chang’an University,Xi’an,710054,China; 2.Key Laboratory of Western China Mineral Resources and Geological Engineering,Ministry of Education of the Peoples’s Republic of China,Xi’an,710054,China; 3.China JK Institute of Engineering and Design,Xi’an,710043,China; 4.Shaanxi Key Laboratory for the Property and Treatment of Special Soil and Rock,Xi’an,710043,China
  • Received:2019-02-03 Online:2019-06-01 Published:2019-05-31
  • Contact: Peng Jianbing E-mail:dicexy_1@126.com

摘要: 渭河盆地是我国现代构造活动十分强烈的地区之一,活断层纵横交错、相互切割,发育地裂缝近212条. 为了研究渭河盆地地裂缝的同生机制,通过地面调查、测绘、探槽、钻探和物探等地质勘探手段,分析渭河盆地地裂缝发育的同生条件和同生特征,总结提出该盆地地裂缝的同生机制. 主要结果有:(1)渭河盆地地裂缝具有较为明显的同生条件,它们处于同一盆地构造框架内,受同一构造应力系统驱动,从而形成了相似的地表破裂系统;(2)渭河盆地地裂缝的同生特征有平面展布的方向性、剖面结构的相似性、与断裂的普遍关联性和活动时间的同步性;(3)渭河盆地地裂缝形成的同生机制包含了四个层次的内容,分别是上地幔隆升的宆拱机制、中上地壳流展的拉伸机制、断块差异运动的牵动机制和断裂伸展蠕滑的破裂机制. 渭河盆地地裂缝破裂系统受控于上述的四个构造动力机制,它们之间相互联系,相互依托,密不可分. 研究渭河盆地地裂缝的同生机制,对于地裂缝生成机理的宏观认识具有着重要的价值,对于地裂缝区域性的防灾减灾具有重大的现实意义.

关键词: 地裂缝, 渭河盆地, 同生机制, 同生特征

Abstract: Weihe Basin is one of the areas where modern tectonic activity is very strong in China. Active faults crisscross and cut each other,and there are nearly 212 ground fissures. In order to summarize the syngenetic mechanism of ground fissures in the Weihe Basin,this paper studies and analyzes the syngenetic conditions and characteristics of ground fissures in the basin by means of surveying,mapping,trenching,drilling and geophysical prospecting. The main results are as follows:(1)The ground fissures in the Weihe Basin have obvious syngenetic conditions. They are in the same tectonic frame and are driven by the same tectonic stress system,thus forming a similar surface fracture system.(2)The syngenetic characteristics of ground fissures in the Weihe basin include the orientation of plane distribution,the similarity of section structure,the general correlation with faults and the synchronization of activity.(3)The syngenetic mechanism of ground fissures in the Weihe basin includes the uplift of upper mantle,the flow extending of middle and upper crust,the differential motion of fault blocks,and the stretching creep of faults. The ground fissures in the Weihe Basin are controlled by the above-mentioned tectonic dynamic mechanisms,which are interrelated,interdependent and inseparable. The study on the syngenetic mechanism of ground fissures in the Weihe basin is of great value to the macro understanding of the formation mechanism of ground fissures and it has great practical significance for regional disaster prevention and mitigation.

Key words: ground fissure, Weihe Basin, syngenetic mechanism, syngenetic characteristics

中图分类号: 

  • P642
[1] El Baruni S S. Earth fissures caused by groundwater withdrawal in Sarir South agricultural project area,Libya. Applied Hydrogeology,1994,2(1):45-52.
[2] Lee C F,Zhang J M,Zhang Y X. Evolution and origin of the ground fissures in Xian,China. Engineering Geology,1996,43(1):45-55.
[3] Li Y L,Yang J C,Hu X M. Origin of ground fissures in the Shanxi Graben system,Northern China. Engineering Geology,2000,55(4):267-275.
[4] Peng J B,Sun P,Li X. Ground fissure:the major geological and environmental problem in the development of Xi’an City,China. Environmental Science and Technology,2006,2:469-474.
[5] Burbey T J. Mechanisms for earth fissure formation in heavily pumped basins ∥ Land Subsidence,Associated Hazards and the Role of Natural Resources Development. IAHS-AISH Publication,2010,3-8.
[6] Filippis L D,Anzalone E,Billi A,et al. The origin and growth of a recently-active fissure ridge travertine over a seismic fault,Tivoli,Italy. Geomorphology,2013,195:13-26.
[7] Pacheco-Martínez J,Hernandez-Marín M,Burbey T J,et al. Land subsidence and ground failure associated to groundwater exploitation in the Aguascalientes Valley,México. Engineering Geology,2013,164:172-186.
[8] Youssef A M,Sabtan A A,Maerz N H,et al. Earth Fissures in Wadi Najran,Kingdom of Saudi Arabia. Natural Hazards,2014,71(3):2013-2027.
[9] Rogers T H. Active extensional faulting north of Hollister near the Calaveras fault zone. Bulletin of the Seismological Society of America,1967,57(4):813-816.
[10] Hauksson E. Episodic rifting and volcanism at Krafla in north Iceland-growth of large gound fissures along the plate boundary. Journal of Geophysical Research:Solid Earth,1983,88(B1):625-636.
[11] Wang G Y,You G,Shi B,et al. Earth fissures in Jiangsu Province,China and gedogical investigation of Hetang earth fissure. Enviromental Earth Saences,61(1),35-43.
[12] Bankher K A,A1-Harthi A A. Earth fissuring and land subsidence in western Saudi Arabia. Natural Hazards,1999,20(1):21-42.
[13] Qu F F,Zhang Q,Lu Z,et al. Land subsidence and ground fissures in Xi’an,China 2005-2012 revealed by multi-band InSAR time-series analysis. Remote Sensing Environment,2014,155:366-377.
[14] Kalogirou E E,Tsapanos T M,Karakostas V G,et al. Ground fissures in the area of Mavropigi Village(N.Greece):seismotectonics or mining activity. Acta Geophysica,2014,62(6):1387-1412.
[15] Peng J B,Xu J S,Ma R Y,et al. Characteristics and mechanism of the Longyao ground fissure on North China Plain,China. Engineering Geology,2016,214:136-146.
[16] Jachens R C,Holzer T L. Geophysical investigations of ground failure related to ground-water withdrawal-picacho Basin,Arizona. Ground Water,1979,17(6):574-585.
[17] Pampeyan E H,Holzer T L,Clark M M. Modern ground failure in the Garlock fault zone,Fremont Valley,California. Geological Society of America Bulletin,1988,100(5):677-691.
[18] Haneberg W C,Friesen R L. Tilts,strains,and ground-water levels near an earth fissure in the Mimbres Basin,New Mexico. GSA Bulletin,1995,107(3):316-326.
[19] Ayalew L,Yamagishi H,Reik G. Ground cracks in Ethiopian Rift Valley:Facts and uncertainties. Engineering Geology,2004,75(3-4):309-324.
[20] Pacheco J,Arzate J,Rojas E,et al. Delimitation of ground failure zones due to land subsidence using gravity data and finite element modeling in the Querétaro valley,México. Engineering Geology,2006,84(3-4):143-160.
[21] 彭建兵,苏生瑞,米丰收等. 渭河盆地活动断裂与地质灾害. 西安:西北大学出版社,1992,88-90.(Peng J B,Su S R,Mi F S,et al. Active faults and geological hazards in Weihe Basin. Xi’an:Northwest University Press,1992,88-90.)
[22] 陈志新,袁志辉,彭建兵等. 渭河盆地地裂缝发育基本特征. 工程地质学报,2007,15(4):441-447.(Chen Z X,Yuan Z H,Peng J B,et al. Basic characteristics about ground fractures’ develop-ment of Weihe Basin. Journal of Engineering Geology,2007,15(4):441-447.)
[23] Zhang Q,Qu W,Wang Q L,et al. Analysis of present tectonic stress and regional ground fissure formation mechanism of the Weihe Basin. Survey Review,2011,43(322):382-389.
[24] 张 勤,瞿 伟,彭建兵等. 渭河盆地地裂缝群发机理及东、西部地裂缝分布不均衡构造成因研究. 地球物理学报,2012,55(8):2589-2597.(Zhang Q,Qu W,Peng J B,et al. Research on tectonic causes of numerous ground fissures development mechanism and its unbalance distribution between eastern and western of Weihe Basin. Chinese Journal of Geophysics,2012,55(8):2589-2597.)
[25] 何红前. 渭河盆地地裂缝成因机理研究. 博士学位论文. 西安:长安大学,2012.(He H Q. Study on the Formation Mechanism of Ground Fissures in Weihe Basin. Ph.D.Dissertation. Xi’an:Chang’an University,2012.)
[26] 邓亚虹,彭建兵,李 丽等. 渭河盆地基底伸展与地裂缝成因关系探讨. 工程地质学报,2013,21(1):92-96.(Deng Y H,Peng J B,Li L,et al. Causative relationship between basement stretching and ground fissures formation in Weihe Basin. Journal of engineering geology,2013,21(1):92-96.)
[27] 邓亚虹,彭建兵,穆焕东等. 渭河盆地深部构造活动的地裂缝孕育机理. 吉林大学学报(地球科学版),2013,43(2):521-527.(Deng Y H,Peng J B,Mu H D,et al. Ground fissures germination mechanism of deep structure activities in Weihe Basin. Journal of Jilin University(Earth Science Edition),2013,43(2):521-527.)
[28] 任 隽. 谓河盆地深部地壳结构探测与盆地构造研究. 博士学位论文. 西安:长安大学,2012.(Ren J. Probe on the Deep Crustal structure in Weihe Basin and tectonics research of basin. Ph.D.Dissertation. Xi’an:Chang’an University,2012.)
[1] 曹 群,陈蓓蓓,宫辉力,周超凡,罗 勇,高明亮,王 旭,史 珉,赵笑笑,左俊杰. 基于SBAS和IPTA技术的京津冀地区地面沉降监测[J]. 南京大学学报(自然科学版), 2019, 55(3): 381-391.
[2] 叶 超,田 芳,罗 勇,王新惠,田苗壮,崔文君,王立发,雷坤超. 北京地面沉降控制区划及防控措施[J]. 南京大学学报(自然科学版), 2019, 55(3): 440-448.
[3] 杨建民,于佳卉,霍王文. 区域性地面沉降形状参数c1与c2间线性关系研究[J]. 南京大学学报(自然科学版), 2019, 55(3): 420-428.
[4] 卢 毅,于 军,龚绪龙,王宝军,魏广庆,季峻峰. 基于DFOS的连云港第四纪地层地面沉降监测分析[J]. 南京大学学报(自然科学版), 2018, 54(6): 1114-1123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 丁晓冬,张 陆,耿洪斌,陈庆民. 基于芳香族端氨基聚四亚甲基醚软段的聚脲弹性体结构与性能[J]. 南京大学学报(自然科学版), 2019, 55(3): 498 -503 .
[2] 刘瑞红,王晖,陶农建. 电位调制下单纳米颗粒的等离激元成像研究[J]. 南京大学学报(自然科学版), 2019, 55(5): 813 -818 .
[3] 柴变芳,魏春丽,曹欣雨,王建岭. 面向网络结构发现的批量主动学习算法[J]. 南京大学学报(自然科学版), 2019, 55(6): 1020 -1029 .
[4] 王大洋. 渤南洼陷沙三下亚段烃源岩地球化学特征及差异性研究[J]. 南京大学学报(自然科学版), 2019, 55(6): 924 -933 .
[5] 韩普,刘亦卓,李晓艳. 基于深度学习和多特征融合的中文电子病历实体识别研究[J]. 南京大学学报(自然科学版), 2019, 55(6): 942 -951 .
[6] 张家精,夏巽鹏,陈金兰,倪友聪. 基于张量分解和深度学习的混合推荐算法[J]. 南京大学学报(自然科学版), 2019, 55(6): 952 -959 .
[7] 洪佳明,黄云,刘少鹏,印鉴. 具有结果多样性的近似子图查询算法[J]. 南京大学学报(自然科学版), 2019, 55(6): 960 -972 .
[8] 李康,谢宁,李旭,谭凯. 基于卷积神经网络和几何优化的统计染色体核型分析方法[J]. 南京大学学报(自然科学版), 2020, 56(1): 116 -124 .
[9] 王浩哲,刘虎,韦志伟,邓倩,李诗达,张海祖,程斌,廖泽文. 塔里木盆地东部上寒武统SPICE事件检出及其油气地球化学意义[J]. 南京大学学报(自然科学版), 2020, 56(3): 354 -365 .
[10] 许汇源,侯读杰,刘全有. 东营凹陷沙河街组泥页岩中正丙基胆甾烷与异海绵烷的研究:硫循环对有机质富集的影响[J]. 南京大学学报(自然科学版), 2020, 56(3): 366 -381 .