南京大学学报(自然科学版) ›› 2019, Vol. 55 ›› Issue (5): 813–818.doi: 10.13232/j.cnki.jnju.2019.05.014

• • 上一篇    下一篇

电位调制下单纳米颗粒的等离激元成像研究

刘瑞红,王晖(),陶农建()   

  1. 南京大学化学化工学院,南京,210023
  • 收稿日期:2019-03-23 出版日期:2019-09-30 发布日期:2019-11-01
  • 通讯作者: 王晖,陶农建 E-mail:huiwang520@nju.edu.cn
  • 基金资助:
    国家自然科学基金(21773117)

Analysis of plasmonic imaging of single nanoparticlewith potential modulation

Ruihong Liu,Hui Wang(),Nongjian Tao()   

  1. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
  • Received:2019-03-23 Online:2019-09-30 Published:2019-11-01
  • Contact: Hui Wang,Nongjian Tao E-mail:huiwang520@nju.edu.cn

摘要:

表面等离激元共振显微镜(Surface Plasmon Resonance microscopy,SPRm)与电位调制的联用可用于分析自组装膜(Self?Assembled Monolayer,SAM)控制下电极表面不同距离的纳米颗粒.对单纳米颗粒的SPRm图像强度(DC成分)及对电位的响应(由快速傅里叶变换得到的振幅图像,或AC成分)进行了检测及分析.结果显示:DC图像强度与SAM层的厚度无任何关系,但图像的AC成分对厚度变化具有较高的灵敏度,这一现象可以用表面阻抗及表面电位与单纳米颗粒和电极之间距离的关系来解释.此方法具有高速、实时、灵敏及免标记等优势,为电极表面单纳米颗粒的电化学过程研究提供了可能.

关键词: 单纳米颗粒, 等离激元成像, 电位调制, 自组装膜

Abstract:

Surface Plasmon Resonance microscopy (SPRm) is combined with electrical potential modulation to analyze nanoparticles separated from an electrode with different distances controlled with Self?Assembled Monolayer (SAM). We measure and analyze the SPRm image intensity (DC component) and response of the image intensity to the potential (amplitude image from fast Fourier transform,or AC component) of single nanoparticles. The DC image intensity shows little dependence on the thickness of the SAM,but the AC component is highly sensitive to the thickness. We interpret the finding in terms of the surface impedance and dependence of the surface potential on the separation between the nanoparticles and the electrode. This approach allows for fast,real?time,sensitive and label?free measurement of electrochemical processes of single nanoparticles on electrodes.

Key words: single nanoparticle, plasmonic imaging, potential modulation, self?assembled monolayer

中图分类号: 

  • O651

图1

实验装置及原理示意图"

图2

裸金、正己硫醇和正十八硫醇修饰金片的接触式AFM图像"

图3

裸金、正己硫醇(C6)和正十八硫醇(C18)修饰的金电极电容测量"

图4

单纳米颗粒的AFM图像"

图5

不同表面单纳米颗粒成像研究"

1 Zamborini F P , Hicks J F , Murray R W . Quantized double layer charging of nanoparticle films assembled using carboxylate/(Cu2+ or Zn2+)/carboxylate bridges. Journal of the American Chemical Society,2000,122(18):4514-4515.
2 Zhao J J , Bradbury C R , Huclova S ,et al . Nanoparticle?mediated electron transfer across ultrathin self?assembled films. The Journal of Physical Chemistry B,2005,109(48):22985-22994.
3 Shein J B , Lai L M H , Eggers P K ,et al . Formation of efficient electron transfer pathways by adsorbing gold nanoparticles to self?assembled monolayer modified electrodes. Langmuir,2009,25(18):11121-11128.
4 Barfidokht A , Ciampi S , Luais E ,et al . Distance?dependent electron transfer at passivated electrodes decorated by gold nanoparticles. Analytical Chemistry,2012,85(2):1073-1080.
5 Wang Y X , Shan X N , Tao N J . Emerging tools for studying single entity electrochemistry. Faraday Discussions,2016,193:9-39.
6 Guo J , Pan J , Chang S ,et al . Monitoring the dynamic process of formation of plasmonic molecular junctions during single nanoparticle collisions. Small,2018,14(15):1704164.
7 Chen S W , Pei R J . Ion?induced rectification of nanoparticle quantized capacitance charging in aqueous solutions. Journal of the American Chemical Society,2001,123(43):10607-10615.
8 Hicks J F , Zamborini F P , Murray R W . Dynamics of electron transfers between electrodes and monolayers of nanoparticles. The Journal of Physical Chemistry B,2002,106(32):7751-7757.
9 Horswell S L , O'Nei I A , Schiffrin D J . Kinetics of electron transfer at Pt nanostructured film electrodes. The Journal of Physical Chemistry B,2003,107(20):4844-4854.
10 Shan X N , Patel U , Wang S P ,et al . Imaging local electrochemical current via surface plasmon resonance. Science,2010,327(5971):1363-1366.
11 Shan X N , Díez?Pérez I , Wang L J ,et al . Imaging the electrocatalytic activity of single nanoparticles. Nature Nanotechnology,2012,7(10):668-672.
12 Wang S P , Huang X P , Shan X N ,et al . Electrochemical surface plasmon resonance:basic formalism and experimental validation. Analytical Chemistry,2010,82(3):935-941.
13 Lu J , Wang W , Wang S P ,et al . Plasmonic?based electrochemical impedance spectroscopy:application to molecular binding. Analytical Chemistry,2011,84(1):327-333.
14 Foley K J , Shan X N , Tao N J . Surface impedance imaging technique. Analytical Chemistry,2008,80(13):5146-5151.
15 Fang Y M , Wang W , Wo X ,et al . Plasmonic imaging of electrochemical oxidation of single nanoparticles. Journal of the American Chemical Society,2014,136(36):12584-12587.
16 Yu H , Shan X N , Wang S P ,et al . Molecular scale origin of surface plasmon resonance biosensors. Analytical Chemistry,2014,86(18):8992-8997.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 林 銮,陆武萍,唐朝生,赵红崴,冷 挺,李胜杰. 基于计算机图像处理技术的松散砂性土微观结构定量分析方法[J]. 南京大学学报(自然科学版), 2018, 54(6): 1064 -1074 .
[2] 段新春,施 斌,孙梦雅,魏广庆,顾 凯,冯晨曦. FBG蒸发式湿度计研制及其响应特性研究[J]. 南京大学学报(自然科学版), 2018, 54(6): 1075 -1084 .
[3] 梅世嘉,施 斌,曹鼎峰,魏广庆,张 岩,郝 瑞. 基于AHFO方法的Green-Ampt模型K0取值试验研究[J]. 南京大学学报(自然科学版), 2018, 54(6): 1085 -1094 .
[4] 卢 毅,于 军,龚绪龙,王宝军,魏广庆,季峻峰. 基于DFOS的连云港第四纪地层地面沉降监测分析[J]. 南京大学学报(自然科学版), 2018, 54(6): 1114 -1123 .
[5] 胡 淼,王开军,李海超,陈黎飞. 模糊树节点的随机森林与异常点检测[J]. 南京大学学报(自然科学版), 2018, 54(6): 1141 -1151 .
[6] 洪思思,曹辰捷,王 喆*,李冬冬. 基于矩阵的AdaBoost多视角学习[J]. 南京大学学报(自然科学版), 2018, 54(6): 1152 -1160 .
[7] 魏 桐,童向荣. 基于加权启发式搜索的鲁棒性信任路径生成[J]. 南京大学学报(自然科学版), 2018, 54(6): 1161 -1170 .
[8] 秦 娅, 申国伟, 赵文波, 陈艳平. 基于深度神经网络的网络安全实体识别方法[J]. 南京大学学报(自然科学版), 2019, 55(1): 29 -40 .
[9] 贾海宁, 王士同. 面向重尾噪声的模糊规则模型[J]. 南京大学学报(自然科学版), 2019, 55(1): 61 -72 .
[10] 陆慎涛, 葛洪伟, 周 竞. 自动确定聚类中心的移动时间势能聚类算法[J]. 南京大学学报(自然科学版), 2019, 55(1): 143 -153 .