南京大学学报(自然科学版) ›› 2024, Vol. 60 ›› Issue (2): 218–229.doi: 10.13232/j.cnki.jnju.2024.02.004

• • 上一篇    

超强台风“舒力基”(2021)的尺度可预报性

黄雨婧, 谈哲敏()   

  1. 中尺度灾害性天气教育部重点实验室,南京大学大气科学学院,南京,210023
  • 收稿日期:2024-02-24 出版日期:2024-03-30 发布日期:2024-03-29
  • 通讯作者: 谈哲敏 E-mail:zmtan@nju.edu.cn
  • 基金资助:
    国家自然科学基金(42192555)

On the size predictability of Super Typhoon Surigae (2021)

Yujing Huang, Zhemin Tan()   

  1. Key Laboratory of Mesoscale Severe Weather, Ministry of Education, and School of Atmospheric Sciences,Nanjing University,Nanjing, 210023,China
  • Received:2024-02-24 Online:2024-03-30 Published:2024-03-29
  • Contact: Zhemin Tan E-mail:zmtan@nju.edu.cn

摘要:

台风尺度表征了台风低层风场特定风速半径大小,是台风灾害影响范围的重要度量.针对超强台风“舒力基”(2021),对其尺度可预报性进行初步探讨.结果表明,模式可以模拟出台风发展初期台风尺度(内核尺度RMW、外围尺度R17)的演变趋势.基于集合预报的模拟试验,具体分析了内核尺度RMW、外围尺度R17演变及其误差增长特征.台风预报总体误差主要出现在对流层下层850 hPa,距离台风中心50~150 km.从初始环境场看,初始相对湿度是影响台风尺度误差增长的重要因子,初始高湿环境有利于台风发展阶段的台风尺度高离散度,从而限制了台风尺度的可预报性.在一定程度上,外围风圈半径的可预报性要高于内核风圈半径.

关键词: 台风, 内核尺度, 外围尺度, 可预报性, 环境湿度

Abstract:

The typhoon size represents the specific wind speed radius of the typhoon,and is an important measure of the impact scope of the disaster. This study conducts a preliminary discussion on the scale predictability of Super Typhoon Surigae (2021). The results show that the numerical model simulates the evolution of typhoon scales,including the inner?core size (RMW),outer?core size (R17) in the early stages of typhoon development. Based on the simulation experiments of ensemble forecasts,the evolution of inner?core size RMW and outer?core size R17 and their error growth characteristics are specifically analyzed. The overall errors in typhoon forecast mainly occurs at 850 hPa in the lower troposphere,50 to 150 km away from the typhoon center. From the perspective of the initial environmental field,the initial relative humidity is an important factor affecting the growth of typhoon size errors,and then to limit the predictability of typhoon size. The initial high humidity environment is conducive to the high dispersion of typhoon outer?core size in the typhoon development stage. To a certain extent,the predictability of the outer wind circle radius is higher than that of the inner?core wind circle radius.

Key words: typhoon, inner?core size, outer?core size, predictability, environmental humidity

中图分类号: 

  • P444

图1

台风“舒力基”的(a)移动路径(彩色实线)和外围风圈半径R17覆盖范围(蓝色圆形),(b)中心气压(实线)和最大风速(虚线),(c)最大风速半径RMW(短虚线)、外围风圈半径R17(长虚线)和台风丰满度TCF(实线)随时间的变化"

图2

WRF模拟区域,填色为地形高度,黑色点线为台风生成后60 h移动路径"

图3

不同预报时效下,(a) RMW和(b) R17(以10 m高度风场计算)随时间的变化The black line is the size observation data from JTWC."

图4

不同预报时效RMW和R17模拟误差分布The upper,middle,and lower lines are the 25th, 50th, and 75th percentile lines,and the upper and lower short lines represent the maximum and minimum values."

图5

16日12时850 hPa相对湿度(填色,%)和10 m高度17 m·s-1风速(等值线),(a~d)依次为S60, S48, S36, S24"

图6

(a)台风中心300 km范围所有成员整层的总能量偏差和(b)不同等压面上的总能量偏差(DTE)随时间的变化((a)为所有成员相对CTRL;(b)为集合平均相对CTRL)"

图7

集合平均的850 hPa总能量偏差(DTE,单位:m2·s-2)水平分布随时间的演变,同心圆从内向外依次表示半径为50, 150, 300 km范围, (a~d)运行时间分别为24, 36, 48, 60 h"

图8

mem1和mem12的850 hPa总能量偏差(DTE,单位:m2·s-2)水平分布随时间的演变:(a~d)为mem1,(e~h)为mem12"

图9

mem1和mem12中心300 km范围的总能量偏差(DTE)垂直分布随时间的演变"

图10

集合预报成员(a, c) RMW和(b, d) R17及其(c, d)模拟误差随时间的变化"

图11

(a)所有成员R17, RMW和初始时刻、末时刻相对湿度相关系数变化,红线表示R17(实线)、RMW(虚线)和末时刻相对湿度的相关系数,黑线表示R17(实线)、RMW(虚线)和初始时刻相对湿度的相关系数;(b)与(a)相同,但是为R17, RMW和海平面气压的相关系数"

图12

两组集合(a) RMW和(b) R17随时间的演变The red lines for the high?RH ensemble,the blue lines for the low?RH ensemble,and the boundary of the shaded area arethe envelope lines of the corresponding ensemble."

图13

两组集合(a) RMW和(b) R17离散度随时间的演变"

图14

(a)相对湿度、(b)地表潜热通量和(c)海平面气压的离散度随时间演变"

1 Rotunno R, Emanuel K A. An air–sea interaction theory for tropical cyclones. Part Ⅱ:Evolutionary study using a nonhydrostatic axisymmetric numerical model. Journal of the Atmospheric Sciences,198744(3):542-561.
2 Cocks S B, Gray W M. Variability of the outer wind profiles of western North Pacific typhoons:Classifications and techniques for analysis and forecasting. Monthly Weather Review2002130(8):1989-2005.
3 Lee C S, Cheung K K W, Fang W T,et al. Initial maintenance of tropical cyclone size in the western North Pacific. Monthly Weather Review2010138(8):3207-3223.
4 Xu J, Wang Y Q. Sensitivity of the simulated tropical cyclone inner?core size to the initial vortex size. Monthly Weather Review2010138(11):4135-4157.
5 Ying Y, Zhang Q H. A modeling study on tropical cyclone structural changes in response to ambient moisture variations. Journal of the Meteorological Society of Japan. Ser. Ⅱ,201290(5):755-770.
6 Lin Y L, Zhao M, Zhang M H. Tropical cyclone rainfall area controlled by relative sea surface temperature. Nature Communications2015,6:6591.
7 Emanuel K A, Neelin J D, Bretherton C S. On large-scale circulations in convecting atmospheres. Quarterly Journal of the Royal Meteorological Society,1994120(519):1111-1143.
8 Hill K A, Lackmann G M. Influence of environmental humidity on tropical cyclone size. Monthly Weather Review2009137(10):3294-3315.
9 Wang Y Q. How do outer spiral rainbands affect tropical cyclone structure and intensity?. Journal of the Atmospheric Sciences200966(5):1250-1273.
10 Tang X D, Tan Z M, Fang J,et al. Impact of the diurnal radiation contrast on the contraction of radius of maximum wind during intensification of Hurricane Edouard (2014). Journal of the Atmospheric Sciences201976(2):421-432.
11 Zhao C F, Lin Y L, Wu F,et al. Enlarging rainfall area of tropical cyclones by atmospheric aerosols. Geophysical Research Letters201845(16):8604-8611.
12 Jones S C, Harr P A, Abraham J,et al. The extratropical transition of tropical cyclones:Forecast challenges,current understanding,and future directions. Weather and Forecasting200318(6):1052-1092.
13 Pérez?Alarcón A,SoríR, Fernández?Alvarez J C,et al. Comparative climatology of outer tropical cyclone size using radial wind profiles. Weather and Climate Extremes2021,33:100366.
14 Knaff J A, Longmore S P, Molenar D A. An objective satellite?based tropical cyclone size climatology. Journal of Climate201427(1):455-476.
15 Carr III L E, Elsberry R L. Models of tropical cyclone wind distribution and beta?effect propagation for application to tropical cyclone track forecasting. Monthly Weather Review1997125(12):3190-3209.
16 Weatherford C L, Gray W M. Typhoon structure as revealed by aircraft reconnaissance. Part Ⅰ:Data analysis and climatology. Monthly Weather Review,1988116(5):1032-1043.
17 Chavas D R, Emanuel K. Equilibrium tropical cyclone size in an idealized state of axisymmetric radiative–convective equilibrium. Journal of the Atmospheric Sciences201471(5):1663-1680.
18 Khairoutdinov M, Emanuel K. Rotating radiative?convective equilibrium simulated by a cloud?resolving model. Journal of Advances in Modeling Earth Systems20135(4):816-825.
19 Chavas D R, Lin N, Dong W H,et al. Observed tropical cyclone size revisited. Journal of Climate201629(8):2923-2939.
20 Chen B F, Davis C A, Kuo Y H. An idealized numerical study of shear?relative low?level mean flow on tropical cyclone intensity and size. Journal of the Atmospheric Sciences201976(8):2309-2334.
21 向纯怡,吴立广,田伟,等. 多平台热带气旋表面风场资料在台风结构分析中的应用. 气象201642(11):1315-1324.
Xiang C Y, Wu L G, Tian W,et al. Applications of MTCSWA data to the characteristic analysis of tropical cyclone structure. Meteorological Monthly201642(11):1315-1324.
22 Zhuo J Y, Tan Z M. Physics?augmented deep learning to improve tropical cyclone intensity and size estimation from satellite imagery. Monthly Weather Review2021149(7):2097-2113.
23 Skamarock W C, Klemp J B. A time?split nonhydrostatic atmospheric model for weather research and forecasting applications. Journal of Computational Physics2008227(7):3465-3485.
24 Kain J S, Fritsch J M. A one?dimensional entraining detraining plume model and its application in convective parameterization. Journal of the Atmospheric Sciences,1990,47(23):2784-2802.
25 Lin Y L, Farley R D, Orville H D. Bulk parameterization of the snow field in a cloud model. Journal of Applied Meteorology,1983,22(6):1065-1092.
26 Hong S Y, Noh Y, Dudhia J. A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review,2006,134(9):2318-2341.
27 Dudhia J. A multi?layer soil temperature model for MM5∥The 6th Annual PSU/NCAR Mesoscale Model Users' Workshop. Boulder,CO,USA:NCAR,1996:49-50.
28 Mlawer E J, Taubman S J, Brown P D,et al. Radiative transfer for inhomogeneous atmospheres:RRTM,a validated correlated?k model for the longwave. Journal of Geophysical Research:Atmospheres,1997,102(D14):16663-16682.
29 Dudhia J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two?dimensional model. Journal of Atmospheric Sciences,1989,46(20):3077-3107.
30 Melhauser C, Zhang F Q. Practical and intrinsic predictability of severe and convective weather at the mesoscales. Journal of the Atmospheric Sciences201269(11):3350-3371.
31 Mitchell H L, Houtekamer P L, Pellerin G. Ensemble size,balance,and model?error representation in an Ensemble Kalman Filter. Monthly Weather Review2002130(11):2791-2808.
32 Zhang F Q, Meng Z Y, Aksoy A. Tests of an ensemble Kalman filter for mesoscale and regional?scale data assimilation. Part Ⅰ:Perfect model experiments. Monthly Weather Review,2006134(2):722-736.
33 Li D Y, Tan Z M. The Role of ocean–atmosphere interactions in tropical cyclone intensity predictability. Journal of the Atmospheric Sciences202380(5):1213-1226.
34 Guo X, Tan Z M. Tropical cyclone fullness:A new concept for interpreting storm intensity. Geophysical Research Letters201744(9):4324-4331.
35 Wang D Y, Lin Y L. Size and structure of dry and moist reversible tropical cyclones. Journal of the Atmospheric Sciences202077(6):2091-2114.
[1] 张心怡, 张熠, 刘昊炎, 王其伟, 王迪. 模拟启动时间和双台风对“21.7”河南极端暴雨事件的影响研究[J]. 南京大学学报(自然科学版), 2024, 60(2): 194-208.
[2] 李明珊, 王元兵, 王元. 台风“罗莎”影响东北冷涡强降水的机理研究[J]. 南京大学学报(自然科学版), 2022, 58(5): 741-749.
[3] 蔡菊珍, 徐集云, 邵鑫, 彭珍, 张宁, 张育慧, 何月. 利奇马台风风场与湍流特征分析[J]. 南京大学学报(自然科学版), 2021, 57(5): 896-903.
[4] 张璐,张熠,周博闻. 水平湍流混合对莫拉克(2009)台风强度及结构的影响[J]. 南京大学学报(自然科学版), 2020, 56(5): 616-629.
[5] 韩峰,储可宽,张熠,刘昊炎. 西北太平洋双台风引导气流的伴随敏感性分析[J]. 南京大学学报(自然科学版), 2020, 56(5): 630-639.
[6] 卓立,吴钲,方德贤,方娟. 超强台风“鲇鱼”形成过程中的水汽演变特征[J]. 南京大学学报(自然科学版), 2020, 56(5): 640-652.
[7] 黄旋旋1,2,朱科锋1*,赵坤. 近海台风中心自适应定位方法研究[J]. 南京大学学报(自然科学版), 2014, 50(6): 855-864.
[8] 王娜1,陈星1,程寿全2. 广州增城台风降水相关天气型[J]. 南京大学学报(自然科学版), 2014, 50(6): 847-854.
[9] 罗 锋1,2*,盛建明1,2,潘锡山1,2,刘秋兴3. 江苏沿海精细化风暴潮模式研究与应用[J]. 南京大学学报(自然科学版), 2014, 50(5): 687-694.
[10]  禹梁玉,方娟**.  台风随"鲇鱼”(2010)过程影响系统分析*[J]. 南京大学学报(自然科学版), 2013, 49(3): 285-299.
[11]  张兴海1·2,郁凡1**.  台风强度及演变的卫星反演试验研究*[J]. 南京大学学报(自然科学版), 2012, 48(6): 701-708.
[12]  杨蜀都,方 娟**.  台风Sinlaku ( 2008)生成过程环境场分析*
[J]. 南京大学学报(自然科学版), 2011, 47(6): 659-669.
[13]  聂高臻, 谈哲敏** , 仇欣 .  台风? 云娜?(2004)的数值模拟:眼墙对流与环境风切变的关系 *

[J]. 南京大学学报(自然科学版), 2010, 46(3): 317-327.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!