南京大学学报(自然科学版) ›› 2021, Vol. 57 ›› Issue (5): 896–903.doi: 10.13232/j.cnki.jnju.2021.05.022

• • 上一篇    

利奇马台风风场与湍流特征分析

蔡菊珍1, 徐集云1, 邵鑫2, 彭珍2(), 张宁2, 张育慧1, 何月1   

  1. 1.浙江省气候中心, 杭州, 310052
    2.南京大学大气科学学院, 南京, 210023
  • 收稿日期:2021-03-09 出版日期:2021-09-29 发布日期:2021-09-29
  • 通讯作者: 彭珍 E-mail:ningzhang@nju.edu.cn
  • 作者简介:E⁃mail:ningzhang@nju.edu.cn
  • 基金资助:
    国家自然科学基金(41975006);浙江省自然科学基金(LGF18D050001)

Wind and turbulence characteristics of typhoon Lekima

Juzhen Cai1, Xin Shao1, Zhen Peng2, Ning Zhang2(), Jiyun Xu2, Yuhui Zhang1, Yue He1   

  1. 1.Zhejiang Climate Center, Hangzhou, 310052, China
    2.School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
  • Received:2021-03-09 Online:2021-09-29 Published:2021-09-29
  • Contact: Ning Zhang E-mail:ningzhang@nju.edu.cn

摘要:

由于台风的风速大、湍流活跃,台风过境时会对房屋、桥梁等建筑物造成严重危害.利用2019年8月8日至11日利奇马台风过境浙江时的近地层湍流资料,对利奇马台风的风速、风向、攻角、湍流强度、阵风因子、湍流积分尺度、湍流功率谱特征进行了分析.结果表明:(1)在台风前期和大风期,随着台风接近,慈溪观测场附近的风速急剧增大,流场主要为偏东气流;在台风后期,随着台风远离观测场,风速迅速减小,风向逐渐由偏东风转为西南风.(2)在台风前期和大风期,攻角、湍流强度和阵风因子都比较小;而在台风后期,攻角、湍流强度和阵风因子都明显增大,同时湍流积分尺度突然变小,说明了利奇马台风内部流场非常复杂,不同区域会出现不同的中小尺度结构,表现出不同的湍流特征.(3)在台风前期和大风期,惯性子区湍流能谱基本满足-2/3律,而大风期的湍流能谱与-2/3律偏离比较大,同时由于台风内部存在大量的中小尺度系统,在大尺度和湍流尺度涡旋之间,顺风方向的湍流能量贡献仍然很大.

关键词: 近地层,攻, 角,湍流强度,阵风因子,湍流积分尺度,湍流功率谱,利奇马台风

Abstract:

The passage of typhoon could be harmful to buildings and bridges due to strong wind and active turbulence in typhoon. This study analyzes wind speed,wind direction,attack angle,turbulence intensity,gust factor,turbulent integral length,and turbulent spectrum of typhoon Lekima using observations collected in Zhejiang province from 8 to 11 August 2019. The results show as following. (1) Wind speed dramatically increases at the early stage and strong wind stage of typhoon,where easterly wind dominants. At the final stage of typhoon,wind speed decreases and wind direction turns to southwest. (2) The attack angle,turbulence intensity,and gust factor are small at the early stage and strong wind stage of typhoon. However,these three parameters increase and the turbulent integral length suddenly decreases at the final stage of typhoon,indicating complex flow field in typhoon Lekima. Meso?micro scale structures changes with quadrants in typhoon. (3) The turbulent spectrum nearly follow Kolmogorov's -2/3 law at the early stage and strong wind stage of typhoon,however at the final stage,they do not have such a relationship. For the range between mesoscale and turbulence scale,along?wind component contributes largely to the total turbulent energy since a large amount of meso?micro scale eddies exist in typhoon.

Key words: surface layer, attack angle, turbulence intensity, gust factor, turbulent integral length, turbulent energy spectrum, typhoon Lekima.

中图分类号: 

  • P404

图1

台风“利奇马”的移动路径"

图2

“利奇马”台风经过慈溪观测站前后(a)风速风向和(b)风攻角随时间的变化(a)中的灰色实线为台风在温岭登陆时刻8月10日01∶45"

表1

台风过境不同时期的湍流特征对比"

台风前期大风期台风后期
30 m60 m30 m60 m30 m60 m
平均风速(m?s-111.312.018.420.68.411.4
风攻角(°)0.051.290.920.126.55-3.36
顺风方向的湍流强度Iu0.140.110.150.120.190.22
侧向湍流强度Iv0.100.100.100.090.140.22
垂直方向湍流强度Iw0.070.060.070.070.110.13
Iv/Iu0.710.910.670.750.741.00
Iw/Iu0.500.550.470.580.580.59
阵风因子G1.301.251.311.261.461.69
顺风方向积分尺度ISu(m)266.5344.1163.3198.0121.6112.9
侧向积分尺度ISv(m)213.0273.9275.4347.0122.7126.6
垂直方向积分尺度ISw(m)15.749.638.450.088.388.7

图3

(a)30 m和(b)60 m两高度层的湍流强度以及(c)阵风因子随时间的变化"

图4

30 m高度上三个方向的湍流强度:(a) Iu,(b) Iv,(c)Iw和阵风因子(d)与风速的关系(所用数据与图2一致)"

图5

30 m (a)和60 m (b)两个高度层的湍流积分尺度随时间的变化"

图6

u(a),v (b)和w (c)方向的湍流积分尺度随风速的变化所用数据为8月9日00:00时至8月11日04∶00慈溪站的观测数据"

图7

不同时期近地面风速的能谱分布:30 m上的u (a),v (c),w (e)谱和60 m上的u (b),v (d),w (f)谱"

1 Xie H Y,Chai D D,Zhang X. Investigation in rural buildings' damage caused by local strong wind in
Suihua. Applied Mechanics and Materials,2012(174-177):2160-2164.
2 Von Karman T. Aerodynamics. Selected:Topics in the light of their historical development. Ithaca,NY,USA:Cornell University Press,1954.
3 Mohammadi A,Azizinamini A,Griffis L,et al.
Performance assessment of an existing47?story high?rise building under extreme wind loads. Journal of Structural Engineering,2019,145(1):04018232.
4 Emanuel K. Increasing destructiveness of tropical
cyclones over the past30years. Nature,2005,436(7051):686-688.
5 Xu Y L,Zhan S. Field measurements of Di Wang tower during typhoon York. Journal of Wind Engineering and Industrial Aerodynamics,2001,89(1):73-93.
6 Hui M C H,Larsen A,Xiang H F. Wind turbulence characteristics study at the Stonecutters Bridge site:Part Ⅰ:Mean wind and turbulence intensities.
Journal of Wind Engineering and Industrial Aerodynamics,2009,97(1):22-36.
7 Hui M C H,Larsen A,Xiang H F. Wind turbulence characteristics study at the Stonecutters Bridge site:Part Ⅱ:Wind power spectra,integral length scales and coherences. Journal of Wind Engineering and Industrial Aerodynamics,2009,97(1):48-59.
8 Giammanco I M,Schroeder J L,Powell M D. GPS dropwindsonde and WSR?88D observations of tropical cyclone vertical wind profiles and their characteristics. Weather and Forecasting,2013,28(1):77-99.
9 Powell M D,Vickery P J,Reinhold T A. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature,2003,422(6929):279-283.
10 Moon I J,Ginis I,Hara T. Effect of surface waves on
air–sea momentum exchange. Part Ⅱ:Behavior of drag coefficient under tropical cyclones. Journal of the
Sciences Atmospheric,2004,61(19):2334-2348.
11 Takagaki N,Komori S,Suzuki N,et al. Mechanism of drag coefficient saturation at strong wind speeds. Geophysical Research Letters,2016,43(18):9829-9835.
12 Bartoli G,Ricciardelli F,Saetta A,et al. Performance of wind exposed structures:Results of the PERBACCO project. Firenze,Italy:Firenze University Press,2006.
13 Ciampoli M,Petrini F,Augusti G. Performance?based wind engineering:Towards a general
procedure. Structural Safety,2011,33(6):367-378.
14 Vickers D,Mahrt L. Quality control and flux
sampling problems for tower and aircraft data.
Journal of Atmospheric and Oceanic Technology,1997,14(3):512-526.
15 H?jstrup J. A statistical data screening procedure. Measurement Science and Technology,1993,4(2):153-157.
16 交通运输部. 公路桥梁抗风设计规范. JTG/T
3360?01?2018. Ministry of Transport. Wind?
resistent Design Specification for Highway Bridges. JTG/T 3360?01?2018.
17 姚伟,唐煜,李英森. 风攻角对斜拉桥抖振的影响. 交通科技,2013(3):9-12.
Yao W,Tang Y,Li Y S. Influence of the wind attack angle on the
cable?stayed bridge buffeting. Transportation Science & Technology,2013(3):9-12.
18 肖仪清,李利孝,宋丽莉等. 基于近海海面观测的台风黑格比风特性研究. 空气动力学报,2012,30(3):380-387.
Xiao Y Q,Li L X,Song L L,et al. Study on wind characteristics of typhoon Hagupit based on offshore sea surface measurements. Acta Aerodynamica Sinica,2012,30(3):380-387.
19 中华人民共和国建设部,国家质量监督检验检疫总局. 建筑结构荷载规范(2006版). GB 50009?2001. (Ministry of Construction,General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China. Load code for the
design of building structures. GB50009?2001.
20 王旭,黄鹏,顾明. 基于台风“梅花”的近地层湍流积分尺度实测分析. 同济大学学报(自然科学版),2012,40(10):1491-1497.
Wang X,Huang P,Gu M. Field measurements about integral scales of near?ground turbulence during typhoon ‘Muifa'. Journal of Tongji University (Natural Science),2012,40(10):1491-1497.
21 王旭,黄超,黄鹏等. 台风“海葵”近地风脉动特性实测研究. 振动与冲击,2017,36(11):199-205,241.
Wang X,Huang C,Huang P,et al. Field measurements for characteristics of near ground fluctuating wind during typhoon 'HAIKUI' blowing. Journal of Vibration and Shock,2017,36(11):199-205,241.
22 彭珍,宋丽莉,胡非等. 台风“珍珠”登陆期间动量通量的多尺度分析. 热带气象学报,2012,28(1):61-67. (Peng Z,Song L L,Hu F,et al. Multi?scale
analysis on momentum flux of typhoon Chanchu
during its landfall. Journal of Tropical Meteorology,2012, 28(1):61-67.
23 杜云松,彭珍,张宁等. 南京地区一次降水过程湍流特征研究. 南京大学学报(自然科学),2011,47(6):703-711. (Du Y S,Peng Z,Zhang N,et al.
Turbulent characteristics of surface layer during a heavy precipitation event over the Nanjing area,
China eastern. Journal of Nanjing University
Science) Natural,2011,47(6:703-711.
24 王国羽,孙鉴泞. 城市粗糙子层湍流能谱特征分析. 南京大学学报(自然科学),2014,50(6):820-828. (Wang G Y,Sun J N. Characteristics of turbulence spectra in the urban roughness layer. Journal of
Nanjing University (Natural Sciences),2014,50(6):820-828.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!