南京大学学报(自然科学版) ›› 2020, Vol. 56 ›› Issue (5): 640–652.doi: 10.13232/j.cnki.jnju.2020.05.004

• • 上一篇    

超强台风“鲇鱼”形成过程中的水汽演变特征

卓立1,吴钲2,方德贤3,方娟1()   

  1. 1.南京大学大气科学学院,南京,210023
    2.重庆气象科学研究所,重庆,401147
    3.重庆渝北气象局,401147
  • 收稿日期:2020-06-05 出版日期:2020-09-30 发布日期:2020-09-29
  • 通讯作者: 方娟 E-mail:fangjuan@nju.edu.cn
  • 基金资助:
    国家重大研究发展计划(2017YFC1501601);国家自然科学基金(41875067)

Moisture evolution during the pre⁃genesis of Super Typhoon Megi (2010)

Li Zhuo1,Zheng Wu2,Dexian Fang3,Juan Fang1()   

  1. 1.School of the Atmospheric Sciences,Nanjing University,Nanjing,210023,China
    2.Chongqing Institute of Meteorological Sciences,Chongqing 401147,China
    3.Yubei Meteorological Office of Chongqing,Chongqing 401147,China
  • Received:2020-06-05 Online:2020-09-30 Published:2020-09-29
  • Contact: Juan Fang E-mail:fangjuan@nju.edu.cn

摘要:

基于一次成功的数值模拟和相关的敏感性试验,对超强台风鲇鱼形成过程中的水汽演变以及海气非线性反馈机制?WISHE (wind?induced surface heat exchange instability)机制的作用进行了探讨.在“鲇鱼”台风形成过程中,对流活动具有显著的日变化特征.与之相对应,台风前期扰动中的总水汽含量呈现出振荡式增长的特征.在浅对流活跃阶段,台风胚胎中的总水汽含量逐渐增加,而在深对流爆发和随后的层云阶段,总水汽含量迅速减小.在浅对流活跃阶段,台风前期扰动中总水汽含量的增加是大气中水汽通量辐合和海洋蒸发的结果,其中,前者的贡献远大于后者.在深对流阶段,由于水汽通量辐合以及海洋蒸发所贡献的水汽之和略小于深对流引发的强降水引起的水汽消耗,因此,台风前期扰动中的总水汽含量下降,但这一减少量小于浅对流阶段总水汽含量的增量,正是通过几次这样的周期性变化,台风前期扰动中的总水汽含量呈振荡式增加,最终支持了临近台风形成时刻深对流的爆发,导致了“鲇鱼”台风的生成.上述结果表明浅对流活动对于台风前期扰动的增湿和深对流活动以及台风形成具有重要贡献.数值敏感性试验表明,尽管海洋蒸发贡献的水汽远小于大气中水汽辐合贡献的水汽,但来自海洋的水汽对“鲇鱼”的形成仍然是必不可少的.不仅如此,WISHE机制对于“鲇鱼”的形成也是必要的.在敏感性试验中,WISHE机制被抑制后,“鲇鱼”台风前期扰动发展缓慢,涡度柱一直局限于500 hPa以下,没有形成一个典型的热带低压.

关键词: 台风形成, 水汽, 对流, 海洋蒸发, WISHE

Abstract:

This study explores the moisture evolution and the role of the wind?induced surface heat exchange instability (WISHE) mechanism during the formation of Super Typhoon Megi (2010) with a successful high?resolution simulation and related sensitivity experiments. During the genesis of Megi,the convection is quasi?periodically active in pre?Megi disturbance. Corresponding to the convection activities,the column?integrated water vapor (CWV) fluctuates in pre?Megi's center area. CWV increases rapidly in the shallow convection phases while decreases slightly in the deep convection and subsequent stratiform phases.During the shallow convection phase,both the surrounding atmosphere and the underlying ocean contributes to the humidification of the disturbance,and the contribution from the fomer is most of time larger than that from latter. During the deep convection phase,CWV decreases a little as the water vapor consumed by the intense precipitation accompanying the deep convection exceeds that contributed from the water vapor convergence and the underlying ocean. But such a decrease is smaller than the increase during the shallow convection phase. Such periodical processes lead to the oscillating increase of CWV,which eventually favors the burst of deep intense convection and the genesis of Megi. The above results indicate that shallow convection plays an important role in the humidification of pre?Megi's disturbance and the genesis of Megi. Even though the mositure from the ocean is much less than that from the atmosphere,the sensitivity experiment indicates that the ocean and the corresponding WISHE mechanism are both important to Megi's formation. For in the experiment with near?surface wind capped,the spin?up of pre?Megi is much slower than that of the control experiment. And the associated vorticity is confined below 500 hPa. As a result,the disturbance fails to develop into a typical tropical depression.

Key words: tropical cyclogenesis, water vapor, convection, ocean evaporation, WISHE

中图分类号: 

  • P444

图1

(a)控制试验模拟的“Megi”台风前期扰动的移动路径(红色)、由GFS再分析场得到的前期扰动路径(黑色)以及2010年10月13日00时1000 hPa的水平风场,系统的路径使用涡度质心的计算方法确定,涡度取为1000~600 hPa的平均涡度;(b)距前期扰动中心200 km范围内的850 hPa平均涡度随时间的变化(单位:10-5 s-1),垂直虚线对应时间为台风形成时时刻;(c)2010年10月13日00时控制试验模拟的可降水量(填色,单位:kg?m-2)、海平面气压(线条,单位:hPa)和1000 hPa水平风场,黑点表示台风中心"

图2

(a)“鲇鱼”台风前期扰动中心区域中总水汽含量(CWV,粗实线,右坐标轴,单位:1012 kg)和总水汽含量的变化率(WVT)以及水汽通量水平辐合项(HWVF)、海洋蒸发项(EV)、凝结项(NC,左坐标轴,单位:107 kg?s-1)随时间的变化(垂直虚线代表形成时间);(b)“鲇鱼”台风前期扰动中心区域中对流顶出现在各高度的频率(填色)、垂直质量通量(线条,实线代表正值,虚线代表负值,值分别从0.01 kg?m-2?s-1和-0.01 kg?m-2?s-1开始,单位:kg?m-2?s-1,线条间隔为0.01 kg m-2?s-1.对流顶高采用文献[13]中对流顶高的定义)"

图3

(a)边界层(红色,左坐标轴)、对流层低层(蓝色,左坐标轴)和对流层高层(绿色,右坐标轴)水汽含量演变(单位:1012 kg);(b)边界层水汽含量的变化率(WVT)以及水汽通量水平辐合项(HWVF)、垂直输送项(VFX850)和凝结项(NC)的贡献(单位:107 kg?s-1);(c)与(b)类似,但针对对流层低层,垂直输送项(VFX)为850 hPa与500 hPa之间的净垂直水汽通量(VFX=VFX850-VFX500);(d)与(c)类似,但针对对流层高层,垂直输送项(VFX500)代表500 hPa垂直水汽通量"

图4

850 hPa上垂直水汽通量(VFX850,绿色实线,单位:107 kg?s-1)、500 hPa上垂直水汽通量(VFX500,黑色实线,单位:107 kg?s-1)和850 hPa至500 hPa之间的垂直净水汽通量(VFX,蓝色实线,单位:107 kg?s-1)"

图5

与图2a类似,但针对半径400 km(a)和600 km(b)区域内总水汽含量的变化率(WVT)以及水汽通量水平辐合项(HWVF)、海洋蒸发(EV)和凝结项(NC)随时间的变化(单位:107 kg?s-1)"

图6

CTL(a),OFF(b),CAP5(c)试验中扰动中心区域平均涡度随时间的变化(单位:10-5 s-1)"

图7

与图2b相似,但针对OFF(a)试验和CAP5(b)试验"

图8

CTL(黑线),CAP5(红线)和OFF(绿线)试验中扰动中心区域总水汽含量随时间的变化(单位:1012 kg)"

图9

与图2a类似,但针对OFF (a)和CAP5 (b)"

1 Hendricks E A,Montgomery M T,Davis C A. The role of “vortical” hot towers in the formation of tropical cyclone Diana (1984). Journal of the Atmospheric Sciences,2004,61(11): 1209-1232.
2 Montgomery M T,Nicholls M E,Cram T A,et al. A vortical hot tower route to tropical cyclogenesis. Journal of the Atmospheric Sciences,2006,63(1): 355-386.
3 Fang J,Zhang F Q. Initial development and genesis of Hurricane Dolly (2008). Journal of the Atmospheric Sciences,2010,67(3): 655-672.
4 Wang Z,Montgomery M T,Dunkerton T J. Genesis of pre–hurricane Felix (2007). Part I: The role of the easterly wave critical layer. Journal of the Atmospheric Sciences,2010,67(6):1711-1729.
5 Braun S A,Montgomery M T,Mallen K J,et al. Simulation and interpretation of the genesis of tropical storm Gert (2005) as part of the NASA tropical cloud systems and processes experiment. Journal of the Atmospheric Sciences,2010,67(4): 999-1025.
6 Davis C A. The formation of moist vortices and tropical cyclones in idealized simulations. Journal of the Atmospheric Sciences,2015,72(9): 3499-3516.
7 Kilroy G,Smith R K,Montgomery M T. A uni?ed view of tropical cyclogenesis and intensi?cation. Quarterly Journal of the Royal Meteorological Society,2017,143(702): 450-462.
8 Tory K J,Montgomery M T,Davidson N E. Prediction and diagnosis of tropical cyclone formation in an NWP system. Part I: The critical role of vortex enhancement in deep convection. Journal of the Atmospheric Sciences,2006,63(12): 3077-3090.
9 Tory K J,Montgomery M T,Davidson N E,et al. Prediction and diagnosis of tropical cyclone formation in an NWP system. Part II: A diagnosis of tropical cyclone Chris formation. Journal of the Atmospheric Sciences,2006,63(12): 3091-3113.
10 Fang J,Zhang F Q. Evolution of multiscale vortices in the development of hurricane Dolly (2008). Journal of the Atmospheric Sciences,2011,68(1): 103-122.
11 Lussier Ⅲ L L,Montgomery M T,Bell M M. The genesis of typhoon Nuri as observed during the tropical cyclone structure 2008 (TCS?08) ?eld experiment–Part 3: Dynamics of low?level spin?up during the genesis. Atmospheric Chemistry and Physics,2014,14(16): 8795-8812.
12 Wang Z. Thermodynamic aspects of tropical cyclone formation. Journal of the Atmospheric Sciences,2012,69(8): 2433-2451.
13 Wang Z. Role of cumulus congestus in tropical cyclone formation in a high?resolution numerical model simulation. Journal of the Atmospheric Sciences,2014,71(5): 1681-1700.
14 Gray W M. Global view of the origin of tropical disturbances and storms. Monthly Weather Review,1968,96(10): 669-700.
15 Gray W M. Tropical cyclone genesis in the western north Pacific. Journal of the Meteorological Society of Japan. Ser. Ⅱ,1977,55(5): 465-482.
16 Davis C A,Ahijevych D A. Mesoscale structural evolution of three tropical weather systems observed during PREDICT. Journal of the Atmospheric Sciences,2012,69(4): 1284-1305.
17 Davis C A,Ahijevych D A. Thermodynamic environments of deep convection in Atlantic tropical disturbances. Journal of the Atmospheric Sciences,2013,70(7): 1912-1928.
18 Smith R K,Montgomery M T. Observations of the convective environment in developing and non?developing tropical disturbances. Quarterly Journal of the Royal Meteorological Society,2012,138(668): 1721-1739.
19 Komaromi W A. An investigation of composite dropsonde profiles for developing and nondeveloping tropical waves during the 2010 PREDICT field campaign. Journal of the Atmospheric Sciences,2012,70(2): 542-558.
20 Zawislak J,Zipser E J. Analysis of the thermodynamic properties of developing and nondeveloping tropical disturbances using a comprehensive dropsonde dataset. Monthly Weather Review,2013,142(3): 1250-1264.
21 Wang Z,Hankes I. Moisture and precipitation evolution during tropical cyclone formation as revealed by the SSM/I–SSMIS Retrievals. Journal of the Atmospheric Sciences,2016,73(7): 2773-2781.
22 Nolan D S. What is the trigger for tropical cyclogenesis?Australian Meteorological Magazine,2007,56(4): 241-266.
23 Rappin E D,Nolan D S,Emanuel K A. Thermodynamic control of tropical cyclogenesis in environments of radiative?convective equilibrium with shear. Quarterly Journal of the Royal Meteorological Society,2010,136(653): 1954-1971.
24 Wing A A,Camargo S J,Sobel A H. Role of radiative–convective feedbacks in spontaneous tropical cyclogenesis in idealized numerical simulations. Journal of the Atmospheric Sciences,2016,73(7): 2633-2642.
25 Wang Y P,Davis C A,Huang Y J. Dynamics of lower?tropospheric vorticity in idealized simulations of tropical cyclone formation. Journal of the Atmospheric Sciences,2019,76(3): 707-727.
26 Montgomery M T,Wang Z,Dunkerton T J. Coarse,intermediate and high resolution numerical simulations of the transition of a tropical wave critical layer to a tropical storm. Atmospheric Chemistry and Physics,2010,10(22): 10803-10827.
27 Fritz C,Wang Z. 2014: Water vapor budget in a developing tropical cyclone and its implication for tropical cyclone formation. Journal of the Atmospheric Sciences,71(11): 4321-4332.
28 Montgomery M T,Persing J,Smith R K. Putting to rest WISHE?ful misconceptions for tropical cyclone intensification. Journal of Advances in Modeling Earth Systems,2015,7(1): 92-109.
29 Kilroy G,Smith R K,Montgomery M T,et al. A case?study of a monsoon low that formed over the sea and intensified over land as seen in ECMWF analyses. Quarterly Journal of the Royal Meteorological Society,2016,142(699): 2244-255.
30 Tang S M,Smith R K,Montgomery M T,et al. Numerical study of the spin?up of a tropical low over land during the Australian monsoon. Quarterly Journal of the Royal Meteorological Society,2016,142(698): 2021-2032.
31 Tang B H. Coupled dynamic–thermodynamic forcings during tropical cyclogenesis. Part II?: Axisymmetric experiments. Journal of the Atmospheric Sciences,2017,74(7): 2279-2291.
32 Murthy V S,Boos W R. Role of surface enthalpy fluxes in idealized simulations of tropical depression spinup. Journal of the Atmospheric Sciences,2018,75(6): 1811-1831.
33 Ooyama K V. Conceptual evolution of the theory and modeling of the tropical cyclone. Journal of the Meteorological Society of Japan. Ser. Ⅱ,1982,60(1): 369-380.
34 Emanuel K A. An air?sea interaction theory for tropical cyclones. Part I: Steady?state maintenance. Journal of the Atmospheric Sciences,1986,43(6): 585-605.
35 Fang J,Zhang F Q. Contribution of tropical waves to the formation of supertyphoon Megi (2010). Journal of the Atmospheric Sciences,2016,73(11): 4377-4405.
36 Hong S Y,Dudhia J,Chen S H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Monthly Weather Review,2004,132(1): 103-120.
37 Noh Y,Cheon G W,Hong Y S,et al. Improvement of the K?profile model for the planetary boundary layer based on large eddy simulation data. Boundary?Layer Meteorology,2003,107(2): 401-427.
38 Mlawer E J,Taubman S J,Brown P D,et al. Radiative transfer for inhomogeneous atmospheres: RRTM,a validated correlated?k model for the longwave. Journal of Geophysical Research: Atmospheres,1997,102(D14): 16663-16682.
39 Dudhia J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two?dimensional model. Journal of the Atmospheric Sciences,1989,46(20): 3077-3107.
40 Ma Z H,Fei J F,Huang X P,et al. Contributions of surface sensible heat fluxes to tropical cyclone. Part I: Evolution of tropical cyclone intensity and structure. Journal of the Atmospheric Sciences,2015,72(1): 120-140.
41 Zhang F Q,Emanuel K A. On the role of surface fluxes and WISHE in tropical cyclone intensification. Journal of the Atmospheric Sciences,2016,73(5): 2011-2019.
[1] 张璐,张熠,周博闻. 水平湍流混合对莫拉克(2009)台风强度及结构的影响[J]. 南京大学学报(自然科学版), 2020, 56(5): 616-629.
[2]  殷雷1,2,孙鉴泞1**,刘罡
.  地表非均匀加热影响对流边界层湍流特征的大涡模拟研究*
[J]. 南京大学学报(自然科学版), 2011, 47(6): 643-656.
[3]  刘胡蕊,张熠**
.  2008年6月我国南方持续暴雨过程中尺度对流系统特征分析*
[J]. 南京大学学报(自然科学版), 2011, 47(5): 614-626.
[4]  蒋建国, 吴吉春** .  格子行走方法求解一维对流扩散方程*

[J]. 南京大学学报(自然科学版), 2011, 47(3): 276-280.
[5]  宋迅殊 1, 2 , 陈燕 3 , 张宁 1 **.  城市发展对区域气象环境影响的数值模拟:以苏州为例* 

[J]. 南京大学学报(自然科学版), 2011, 47(1): 51-59.
[6]  林 恒 1 , 孙鉴泞 1 ** , 卢 伟 2
.  有切变对流边界层夹卷厚度参数化的大涡模拟研究 *
[J]. 南京大学学报(自然科学版), 2010, 46(6): 616-624.
[7]  束 宇** , 潘益农 .  红外云图上中尺度对流系统的自动识别*

[J]. 南京大学学报(自然科学版), 2010, 46(3): 337-348.
[8]  聂高臻, 谈哲敏** , 仇欣 .  台风? 云娜?(2004)的数值模拟:眼墙对流与环境风切变的关系 *

[J]. 南京大学学报(自然科学版), 2010, 46(3): 317-327.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!