南京大学学报(自然科学版) ›› 2024, Vol. 60 ›› Issue (2): 194–208.doi: 10.13232/j.cnki.jnju.2024.02.002

• • 上一篇    

模拟启动时间和双台风对“21.7”河南极端暴雨事件的影响研究

张心怡1, 张熠1(), 刘昊炎2, 王其伟1, 王迪3   

  1. 1.中尺度灾害性天气教育部重点实验室,南京大学大气科学学院,南京,210093
    2.自然资源部海洋灾害预报技术重点实验室,河海大学海洋学院,南京,210098
    3.中国气象局河南省农业气象保障与应用技术重点实验室,河南省气象台,郑州,450003
  • 收稿日期:2024-02-01 出版日期:2024-03-30 发布日期:2024-03-29
  • 通讯作者: 张熠 E-mail:yizhang@nju.edu.cn
  • 基金资助:
    国家自然科学基金(42192555)

Study on the impacts of simulation start time and binary typhoons on the "21.7" Henan extreme rainfall event

Xinyi Zhang1, Yi Zhang1(), Haoyan Liu2, Qiwei Wang1, Di Wang3   

  1. 1.Key Laboratory of Mesoscale Severe Weather of Ministry of Education, and School of Atmospheric Sciences, Nanjing University, Nanjing, 210093, China
    2.Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, College of Oceanography, Hohai University, Nanjing, 210098, China
    3.Henan Key Laboratory of Agrometeorological Support and Applied Technique, China Meteorological Administration, Henan Meteorological Observatory,Zhengzhou, 450003, China
  • Received:2024-02-01 Online:2024-03-30 Published:2024-03-29
  • Contact: Yi Zhang E-mail:yizhang@nju.edu.cn

摘要:

对发生在2021年7月18日至21日的河南极端暴雨事件(“21.7”河南暴雨)进行集合模拟数值试验,旨在探究模拟启动时间以及台风“烟花”和“查帕卡”对此次暴雨事件的影响.不同模拟启动时间的试验组分析表明,在降水峰值发生前24 h启动的一组试验能够最准确地模拟双台风的路径和强度演变特征,其再现了“21.7”河南暴雨中心位置、强度及时间演变特征,这主要是由于该试验很好地再现了低层东南风急流及其动力辐合特征,基于此最优试验移除台风环流后,副热带高压西伸南压且水汽输送路径随之发生调整.通过定量分析降水关键区的整层水汽通量发现,在降水最大峰值出现的时段内,台风“烟花”和“查帕卡”分别削弱了东南风和偏南风的水汽输送,表明台风的存在对降水的影响存在不确定性,某些时段内反而减缓了河南地区的极端降水.

关键词: “21.7”河南暴雨, 水汽输送, 台风“烟花”(2021), 模拟启动时间

Abstract:

This study utilized the WRF model to conduct ensemble experiments on the Henan record?breaking rainfall event that occurred from July 18th to 21st,2021 ("21.7" Henan rainfall event),aiming to explore the impact of the simulation start time and typhoons "In?fa" and "Cempaka" on this precipitation event. Analysis of different experimental groups with varying simulated initial times showed that the experiment initiated 24 hours before the peak precipitation occurred could most accurately simulate the path and intensity evolution characteristics of the two typhoons,as well as reproduce the center position,intensity,and temporal evolution characteristics of the "21.7" Henan rainfall event. This is mainly because this experiment well reproduced the low?level southeasterly jet and its dynamic convergence characteristics. Based on this optimal experiment,after removing the typhoon circulation,the subtropical high extended westward and southward,with the water vapor transport path adjusting accordingly. Through quantitative analysis of the vertically integrated water vapor transport in the key precipitation area,it was found that during the time period when the maximum peak of precipitation occurred,typhoons "In?fa" and "Cempaka" weakened the water vapor transport of southeasterly and southerly flows,indicating that the existence of the two typhoons had an uncertain impact on precipitation,and in certain periods,they even reduced the extreme precipitation in Henan region.

Key words: "21.7" Henan rainfall event, water vapor transport, typhoon "In?fa" (2021), simulation start time

中图分类号: 

  • P445

图1

(a)模拟试验区域,图中同时放大展示了台风“烟花”和“查帕卡”的路径轨迹,黑色点线为2021年7月18日00时至21日00时观测的台风路径,其他颜色的点线分别对应于CTL不同模式启动时刻的轨迹,相应的最低海平面气压(单位:hPa)演变分别显示在(b)“烟花”和(c)“查帕卡”"

表1

数值模式试验方案"

台风试验组CTL对ERA5数据插值得到初始条件
RM_IN⁃FA同CTL,但移除台风“烟花”
RM_CEM同CTL,但移除台风“查帕卡”
RM_BTC同CTL,但同时移除台风“烟花”和“查帕卡”
模拟启动时间18002021年7月18日00时(UTC)
18062021年7月18日06时(UTC)
18122021年7月18日12时(UTC)
18182021年7月18日18时(UTC)
19002021年7月19日00时(UTC)

图2

2021年7月20日00时至21日00时24 h (a)观测,(b) CTL1800, (c) CTL1806, (d) CTL1900, (e) CTL1818,(f) CTL1812的累积降水量(单位:mm), 黑色矩形框为关键区 (33°~37°N, 111°~115°E)"

图3

(a) 7月20日关键区平均的24 h累积降水量的TS评分(阈值为50 mm),黑色竖线代表观测的24 h累积降水量,(b) 7月19日00时至21日00时观测和模拟的关键区平均小时降水量时间演变(单位:mm)"

图4

2021年7月20日00时至21日00时24 h平均的500 hPa位势高度(588 dagpm等值线)、整层水汽通量矢量(箭头)及其大小(填色,单位:100 kg·(m·s)-1):(a) ERA5, (b) CTL1900, (c) CTL1800, (d) CTL1818, (e) CTL1806, (f) CTL1812(a) ERA5, (b) CTL1900, (c) CTL1800, (d) CTL1818, (e) CTL1806 and (f) CTL1812"

图5

2021年7月20日00时至21日00时24 h平均的950 hPa散度场(填色,单位:10-5 s-1)、200 hPa散度场(等值线,从4×10-5 s-1起始,每2×10-5 s-1递减)、24 h累积降水量超过200 mm的位置(点), (a)中风羽矢为CTL1900的950 hPa水平风场(全长对应4 m·s-1),(b~e)中风羽矢为CTL1900与各敏感试验950 hPa水平风场的差异"

图6

2021年7月20日00时至21日00时500 hPa位势高度(等值线,单位:dagpm)、整层水汽通量矢量(箭头)及其大小(填色,单位:100 kg·(m·s)-1): (a) CTL1900, (b) RM_IN?FA1900, (c) RM_CEM1900, (d) RM_BTC1900(a) CTL1900, (b) RM_IN?FA1900, (c) RM_CEM1900 and (d) RM_BTC1900"

图7

2021年7月20日00时至21日00时24 h累积降水量(单位:mm):(a) CTL1900,(b) RM_IN?FA1900,(c) RM_CEM1900,(d) RM_BTC1900以及关键区面积平均的小时降水量演变(e)The black boxes in Fig.7a~d represent the key areas for calculating the average evolution of area in (e) and Fig.8."

图8

2021年7月19日06时至21日00时降水关键区四个边界上整层水汽通量及净水汽通量的时间演变(单位:107 kg·s-1)"

图9

2021年7月20日15时至21日00时9 h平均的控制试验与移除台风的敏感性试验的差异:(a) CTL1900?RM_IN?FA1900, (b) CTL1900?RM_CEM1900, (c) CTL1900?RM_BTC1900 500 hPa位势高度(填色,单位:dagpm)和整层水汽通量(箭头,>0.3 kg·(m·s)-1)的差异;(d) CTL1900?RM_IN?FA1900, (e) CTL1900?RM_CEM1900, (f) CTL1900?RM_BTC1900整层水汽通量(箭头,>0.3 kg·(m·s)-1)及其大小(填色,单位:kg·(m·s)-1)的差异The black boxes represent the key region (33°~37°N,111°~115°E) used in Table 2. The dashed and solid lines in (a~c) correspond to the 588 dagpm contour lines in the control experiment and sensitivity experiment,respectively."

表2

2021年7月20日15时至21日00时9 h平均的控制试验与三个敏感性试验在关键区四个边界上整层水汽通量差值 (105 kg·s-1)"

CTL1900⁃RM_IN⁃FA1900CTL1900⁃RM_CEM1900CTL1900⁃RM_BTC1900
-31.418.3-10.0
2.3-13.1-17.2
西17.2-8.3-0.9
12.1-0.415.1
0.2-3.4-13.8
1 丁一汇. 中国暴雨理论的发展历程与重要进展. 暴雨灾害201938(5):395-406.
Ding Y H. The major advances and development process of the theory of heavy rainfalls in China. Torrential Rain and Disasters201938(5):395-406.
2 丁一汇. 论河南“75.8”特大暴雨的研究:回顾与评述. 气象学报,2015,73(3):411-424.
Ding Y H. On the study of the unprecedented heavy rainfall in Henan Province during 4-8 August 1975:Review and assessment. Acta Meteorologica Sinica201573(3):411-424.
3 陶诗言. 中国之暴雨. 北京:科学出版社,1980,225.
4 Zhang Q H, Li R M, Sun J Z,et al. A review of research on the record?breaking precipitation event in Henan Province,China,July 2021. Advances in Atmospheric Sciences,2023,40(8):1485-1500.
5 孟智勇,唐晓静,岳健,等. 地面和探空资料的EnKF同化对北京“7.21”极端暴雨模拟的影响. 北京大学学报(自然科学版),2019,55(2):237-245.
Meng Z Y, Tang X J, Yue J,et al. Impact of EnKF surface and rawinsonde data assimilation on the simulation of the extremely heavy rainfall in Beijing on July 21,2012. Acta Scientiarum Naturalium Universitatis Pekinensis201955(2):237-245.
6 马长健,李艳,徐邦琪. 双低空急流对“21.7”河南极端暴雨的影响. 大气科学,2023,47(5):1611-1625.
Ma C J, Li Y, Xu B Q. Impact of double low?level jets on the extreme rainstorm in Henan Province in July 2021. Chinese Journal of Atmospheric Sciences202347(5):1611-1625.
7 Zhang Y J, Yu H Z, Zhang M R,et al. Uncertainties and error growth in forecasting the record?breaking rainfall in Zhengzhou,Henan on 19-20 July 2021. Science China Earth Sciences202265(10):1903-1920.
8 Sun J Z, Li R M, Zhang Q H,et al. Mesoscale factors contributing to the extreme rainstorm on 20 July 2021 in Zhengzhou,China,as revealed by rapid update 4DVar analysis. Monthly Weather Review2023151(8):2153-2176.
9 Luo Y L, Zhang J H, Yu M,et al. On the influences of urbanization on the extreme rainfall over Zhengzhou on 20 July 2021:A convection?permitting ensemble modeling study. Advances in Atmospheric Sciences202340(3):393-409.
10 Deng L, Feng J N, Zhao Y,et al. The remote effect of binary Typhoon Infa and Cempaka on the "21.7" heavy rainfall in Henan Province,China. Journal of Geophysical Research:Atmospheres,2022127(16):e2021JD036260.
11 Sun J H, Fu S M, Wang H J,et al. Primary characteristics of the extreme heavy rainfall event over Henan in July 2021. Atmospheric Science Letters202324(1):e1131.
12 Yin J F, Gu H D, Liang X D,et al. A possible dynamic mechanism for rapid production of the extreme hourly rainfall in Zhengzhou City on 20 July 2021. Journal of Meteorological Research202236(1):6-25.
13 Yu Y, Gao T, Xie L,et al. Tropical cyclone over the western Pacific triggers the record?breaking '21/7' extreme rainfall in Henan,Central?Eastern China. Environmental Research Letters202217(12):124003.
14 Rao C H, Chen G H, Ran L K. Effects of Typhoon In?Fa (2021) and the Western Pacific subtropical high on an extreme heavy rainfall event in central China. Journal of Geophysical Research:Atmospheres,2023,128(7):e2022JD037924.
15 Tang J H, Xu X D, Zhang S J,et al. Response of remote water vapor transport to large topographic effects and the multi?scale system during the "7.20" rainstorm event in Henan Province,China. Frontiers in Earth Science,2023,11:1106990.
16 Liu H Y, Gu J F, Wang Y Q,et al. What controlled the low?level moisture transport during the extreme precipitation in Henan Province of China in July 2021? Monthly Weather Review,2023151(6):1347-1365.
17 Xu H X, Duan Y H, Li Y,et al. Indirect effects of binary typhoons on an extreme rainfall event in Henan province,China from 19 to 21 July 2021:2. Numerical study. Journal of Geophysical Research:Atmospheres,2022,127(15):e2021JD036083.
18 Lorenz E N. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences196320(2):130-141.
19 高丽,陈静,郑嘉雯,等. 极端天气的数值模式集合预报研究进展. 地球科学进展201934(7):706-716.
Gao L, Chen J, Zheng J W,et al. Progress in researches on ensemble forecasting of extreme weather based on numerical models. Advances in Earth Science201934(7):706-716.
20 Lei L L, Ge Y J X, Tan Z M,et al. Evaluation of a regional ensemble data assimilation system for typhoon prediction. Advances in Atmospheric Sciences202239(11):1816-1832.
21 Bauer P, Thorpe A, Brunet G. The quiet revolution of numerical weather prediction. Nature2015525(7567):47-55.
22 Lu X Q, Yu H, Ying M,et al. Western North Pacific tropical cyclone database created by the China meteorological administration. Advances in Atmos?pheric Sciences202138(4):690-699.
23 Ying M, Zhang W, Yu H,et al. An overview of the China meteorological administration tropical cyclone database. Journal of Atmospheric and Oceanic Technology201431(2):287-301.
24 Gilbert G K. Finley's tornado predictions. American Meteorological Journal18841(5):166-172.
25 Skamarock W C, Klemp J B, Dudhia J,et al. A description of the advanced research WRF version 3. Boulder:NCAR,2008:113.
26 Thompson G, Field P R, Rasmussen R M,et al. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part Ⅱ:Implementation of a new snow parameterization. Monthly Weather Review,2008136(12):5095-5115.
27 Iacono M J, Delamere J S, Mlawer E J,et al. Radiative forcing by long?lived greenhouse gases:Calculations with the AER radiative transfer models. Journal of Geophysical Research:Atmospheres,2008113(D13):D13103.
28 Pleim J E. A combined local and nonlocal closure model for the atmospheric boundary layer. Part Ⅰ:Model description and testing. Journal of Applied Meteorology and Climatology,200746(9):1383-1395.
29 Pleim J E. A simple,efficient solution of flux–profile relationships in the atmospheric surface layer. Journal of Applied Meteorology and Climatology200645(2):341-347.
30 Pleim J E, Xiu A J. Development and testing of a surface flux and planetary boundary layer model for application in mesoscale models. Journal of Applied Meteorology and Climatology199534(1):16-32.
31 Xiu A J, Pleim J E. Development of a land surface model. Part Ⅰ:Application in a mesoscale meteorological model. Journal of Applied Meteorology and Climatology,200140(2):192-209.
32 Kain J S, Michael Fritsch J. A one?dimensional entraining/detraining plume model and its application in convective parameterization. Journal of the Atmospheric Sciences199047(23):2784-2802.
33 徐洪雄,徐祥德,张胜军,等. 台风韦森特对季风水汽流的“转运”效应及其对北京“7.21”暴雨的影响. 大气科学,2014,38(3):537-550.
Xu H X, Xu X D, Zhang S J,et al. Long?range moisture alteration of a typhoon and its impact on Beijing extreme rainfall. Chinese Journal of Atmospheric Sciences201438(3):537-550.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!