南京大学学报(自然科学版) ›› 2023, Vol. 59 ›› Issue (6): 1069–1076.doi: 10.13232/j.cnki.jnju.2023.06.016

• • 上一篇    

附加薄膜⁃质量块谐振器的Herschel⁃Quincke管及基于该结构的隔声帘的研究

张轶, 范理()   

  1. 近代声学教育部重点实验室,南京大学声学研究所,南京,210093
  • 收稿日期:2023-10-09 出版日期:2023-11-30 发布日期:2023-12-06
  • 通讯作者: 范理 E-mail:fanli@nju.edu.cn
  • 基金资助:
    国家重点研发计划(2020YFA0211400);国家自然科学基金(12274218)

Research on a Herschel⁃Quincke pipe with membrane⁃mass resonators attached and a sound insulation curtain based on the structure

Yi Zhang, Li Fan()   

  1. Key Laboratory Modern Acoustics,Ministry of Education,Institute of Acoustic of Nanjing University,Nanjing,210093,China
  • Received:2023-10-09 Online:2023-11-30 Published:2023-12-06
  • Contact: Li Fan E-mail:fanli@nju.edu.cn

摘要:

声学超材料在声音和振动的消除领域具有很好的应用前景.由于薄膜材料具有轻质且可以实现低频隔声的特点,薄膜型声学超材料受到广泛的关注.提出一种附加薄膜?质量块谐振器的Herschel?Quincke (HQ)管,通过理论分析及有限元仿真和实验的方法验证了该结构在HQ管道和薄膜?质量块谐振器耦合作用下可以实现低频多带的消声性能.此外,还设计了一种前、后附加薄膜?质量块谐振器的方形盒子单元结构,并基于该结构提出了一种隔声帘结构.隔声帘结构为多个单元组成的二维阵列结构,每个单元由前、后附加薄膜?质量块谐振器的长方体盒子构成.通过有限元模拟验证了该结构具有较好的低频宽带的自由场隔声性能.

关键词: Herschel?Quincke管, 薄膜型声学超材料, 管道消声, 隔声帘

Abstract:

Acoustic metamaterials exhibit great potentials in insulation for sound and vibration,where membrane?based acoustic metamaterials are given high consideration for small masses and sound insulation ability at low frequencies. Here,a membrane?mass attached Herschel?Quincke pipe (MAHQP) is presented. Theoretical analysis,numerical simulations and experiments show that low?frequency and multiple?band sound insulation could be achieved through using the MAHQP due to the coupling between Herschel?Quincke pipe and the membrane?mass resonator. Additionally,a rectangular box is designed,in which the front and rear faces are created using membrane?mass resonators. Furthermore,a sound insulation curtain is designed on the basis of a two?dimensional array of the rectangular box. The sound insulation of the curtain is studied by simulations,which demonstrates that low?frequency,multiple?band sound insulation can be obtained in a free acoustic field.

Key words: Herschel?Quincke pipe, membrane?type acoustic metamaterials, sound insulation in a pipe, sound insulation curtains

中图分类号: 

  • O429

图1

附加薄膜?质量块谐振系统的HQ管道结构示意图"

表1

传统HQ管道和附加薄膜HQ管道理论计算共振频率对比"

共振频率
传统HQ管350 Hz650 Hz770 Hz
附加薄膜HQ管184 Hz395 Hz535 Hz735 Hz780 Hz

图2

(a)不同类型HQ管道传输损失对比;(b)薄膜?质量谐振器的振动模式图(b) mode shapes of the membrane?mass resonator"

图3

(a)质量块不同直径时传输损失对比;(b)质量块不同厚度时传输损失对比(b) comparison of transmission loss between differernt thicknesses of the masses"

图4

(a)实验系统示意图;(b)附加质量薄膜实验图;(c)模拟结果和实验结果对比(c) comparison of transmission loss between simulation and experimental results"

图5

(a)实验系统示意图;(b)附加薄膜HQ管道系统示意图;(c)等效HQ管类比结果;(d)薄膜附加质量块和无质量块模拟结果对比;(e)薄膜?质量谐振器的振动模式图"

图6

(a)帘结构示意图;(b)帘附加质量块和无质量块模拟结果对比"

1 Makris S E, Dym C L, Smith J M. Transmission loss optimization in acoustic sandwich panels. The Journal of the Acoustical Society of America,1986,79(6):1833-1843.
2 António J M P, Tadeu A, Godinho L. Analytical evaluation of the acoustic insulation provided by double infinite walls. Journal of Sound and Vibration,2003,263(1):113-129.
3 Bolton J S, Shiau N M, Kang Y J. Sound transmission through multi?panel structures lined with elastic porous materials. Journal of Sound and Vibration,1996,191(3):317-347.
4 Tang W C, Zheng H, Ng C F. Low frequency sound transmission through close?fitting finite sandwich panels. Applied Acoustics,1998,55(1):13-30.
5 Lee S H, Wright O B. Origin of negative density and modulus in acoustic metamaterials. Physical Review B,2016,93(2):024302.
6 Liu Z Y, Chan C T, Sheng P. Analytic model of phononic crystals with local resonances. Physical Review B,2005,71(1):014103.
7 Mei J, Liu Z Y, Wen W J,et al. Effective mass density of fluid?solid composites. Physical Review Letters,2006,96(2):024301.
8 Huang H H, Sun C T, Huang G L. On the negative effective mass density in acoustic metamaterials. International Journal of Engineering Science,2009,47(4):610-617.
9 Huang H H, Sun C T. Anomalous wave propagation in a one?dimensional acoustic metamaterial having simultaneously negative mass density and Young's modulus. The Journal of the Acoustical Society of America,2012,132(4):2887-2895.
10 Fang N, Xi D J, Xu J Y,et al. Ultrasonic metamaterials with negative modulus. Nature Materials,2006,5(6):452-456.
11 Lee S H, Wright O B. Origin of negative modulus. The Journal of the Acoustical Society of America,2016,139(S4):2182-2182.
12 Li J, Chan C T. Double?negative acoustic metamaterial. Physical Review E,2004,70(5):055602.
13 Li J, Liu Z Y, Qiu C Y. Negative refraction imaging of acoustic waves by a two?dimensional three?component phononic crystal. Physical Review B,2006,73(5):054302.
14 Ding Y Q, Liu Z Y, Qiu C Y,et al. Metamaterial with simultaneously negative bulk modulus and mass density. Physical Review Letters,2007,99(9):093904.
15 Cheng Y, Xu J Y, Liu X J. One?dimensional structured ultrasonic metamaterials with simul?taneously negative dynamic density and modulus. Physical Review B,2008,77(4):045134.
16 Deng K, Ding Y Q, He Z J,et al. Theoretical study of subwavelength imaging by acoustic metamaterial slabs. Journal of Applied Physics,2009,105(12):124909.
17 Yang Z, Mei J, Yang M,et al. Membrane?type acoustic metamaterial with negative dynamic mass. Physical Review Letters,2008,101(20):204301.
18 Yang Z, Dai H M, Chan N H,et al. Acoustic metamaterial panels for sound attenuation in the 50~1000 Hz regime. Applied Physics Letters,2010,96(4):041906.
19 Naify C J, Chang C M, McKnight G,et al. Transmission loss of membrane?type acoustic metamaterials with coaxial ring masses. Journal of Applied Physics,2011,110(12):124903.
20 Chen Y Y, Huang G L, Zhou X M,et al. Analytical coupled vibroacoustic modeling of membrane?type acoustic metamaterials:Plate model. The Journal of the Acoustical Society of America,2014,136(6):2926-2934.
21 Langfeldt F, Gleine W, von Estorff O. Analytical model for low?frequency transmission loss calculation of membranes loaded with arbitrarily shaped masses. Journal of Sound and Vibration,2015(349):315-329.
22 Tian H Y, Wang X Z, Zhou Y H. Theoretical model and analytical approach for a circular membrane–ring structure of locally resonant acoustic metamaterial. Applied Physics A,2014,114(3):985-990.
23 Chen Z, Fan L, Zhang S Y,et al. An open?structure sound insulator against low?frequency and wide?band acoustic waves. Applied Physics Express,2015,8(10):107301.
24 Zhou Z J, Ao W, Fan L,et al. A low?frequency multiple?band sound insulator without blocking ventilation along a pipe. Scientific Reports,2022,12(1):19034.
25 Selamet A, Dickey N S, Novak J M. The Herschel–Quincke tube:A theoretical,computational,and experimental investigation. The Journal of the Acoustical Society of America,1994,96(5):3177-3185.
26 ASTM International. ASTM E2611?09. Standard Test Method for Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the Transfer Matrix Method,2009.
27 Jing X D, Meng Y, Sun X F. Soft resonator of omnidirectional resonance for acoustic metamaterials with a negative bulk modulus. Scientific Reports,2015(5):16110.
[1] 徐陈淳, 王有藩, 陶建成. 分流扬声器用于封闭空间降噪的布放研究[J]. 南京大学学报(自然科学版), 2023, 59(5): 731-741.
[2] 何君君, 殷杰, 刘广东, 马倩倩. 基于声学散射透镜的低成本光声断层成像方法[J]. 南京大学学报(自然科学版), 2023, 59(2): 231-238.
[3] 陈阳, 陶建成. 独立式开口边框有源降噪系统设计[J]. 南京大学学报(自然科学版), 2022, 58(2): 196-204.
[4] 张航, 赵尚, 林志斌, 卢晶. 基于多通道解卷积的车内声重放系统优化设计[J]. 南京大学学报(自然科学版), 2021, 57(6): 1023-1031.
[5] 陈柏村, 陶建成. 一种针对紧凑式管道有源降噪系统的误差传感策略[J]. 南京大学学报(自然科学版), 2021, 57(6): 1013-1022.
[6] 陈佳惠, 蓝君, 王浩然, 李义丰. 盘绕型声学超构材料的近零折射率特性研究[J]. 南京大学学报(自然科学版), 2021, 57(4): 695-701.
[7] 顾昭仪, 卢晶. 指定输出通道排序的半监督盲源分离算法[J]. 南京大学学报(自然科学版), 2021, 57(4): 671-682.
[8] 王泽俊, 林志斌, 陶建成. 基于多种子自适应分组成对比较的音质评价[J]. 南京大学学报(自然科学版), 2021, 57(2): 327-333.
[9] 骆耀东, 邹海山, 邱小军. 分散式有源声屏障系统稳定性研究[J]. 南京大学学报(自然科学版), 2020, 56(6): 909-916.
[10] 姚景瑜, 孟海洋, 杨京, 梁彬, 程建春. 基于BP人工神经网络的轴流风扇气动噪声预测[J]. 南京大学学报(自然科学版), 2020, 56(6): 900-908.
[11] 王鹏,林志斌. 基于响度级、耳间互相关系数和中心频率的主观声场宽度预测模型[J]. 南京大学学报(自然科学版), 2019, 55(5): 804-812.
[12] 王旻,林志斌,卢晶. 适用于虚拟低音音质的客观评价方法研究[J]. 南京大学学报(自然科学版), 2019, 55(5): 796-803.
[13] 林远鹏,梁彬,杨京,程建春. 可实现宽频宽角度隔声的薄层通风结构[J]. 南京大学学报(自然科学版), 2019, 55(5): 791-795.
[14] 张聪鑫,邹海山,邱小军. 小开口声传输有源控制的次级源和误差传感策略研究[J]. 南京大学学报(自然科学版), 2019, 55(5): 781-790.
[15] 章康宁, 卢 晶. 指向性小尺度线性扬声器阵列鲁棒性研究[J]. 南京大学学报(自然科学版), 2019, 55(2): 180-190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!