南京大学学报(自然科学版) ›› 2019, Vol. 55 ›› Issue (5): 781–790.doi: 10.13232/j.cnki.jnju.2019.05.010

• • 上一篇    下一篇

小开口声传输有源控制的次级源和误差传感策略研究

张聪鑫1,邹海山1(),邱小军2   

  1. 1. 南京大学声学研究所,近代声学教育部重点实验室,南京,210093
    2. 悉尼科技大学工程与信息技术学院,声与振动中心,悉尼,2007,澳大利亚
  • 收稿日期:2019-04-16 出版日期:2019-09-30 发布日期:2019-11-01
  • 通讯作者: 邹海山 E-mail:hszou@nju.edu.cn
  • 基金资助:
    国家自然科学基金(11874218)

Secondary source and error sensing strategies for active control ofsound transmission via a small opening

Congxin Zhang1,Haishan Zou1(),Xiaojun Qiu2   

  1. 1. Key Laboratory of Modern Acoustics,Ministry of Education,Institute of Acoustics of Nanjing University,Nanjing,210093,China
    2. Center for Audio,Acoustics and Vibration,Faculty of Engineering and Information Technology,University of Technology Sydney,Sydney,2007,Australia
  • Received:2019-04-16 Online:2019-09-30 Published:2019-11-01
  • Contact: Haishan Zou E-mail:hszou@nju.edu.cn

摘要:

为建筑物提供自然通风和采光功能设置的开口有时成为整个结构隔声的薄弱部分.开口的有源控制一般用于低频降噪,针对4000 Hz以下频段噪声,研究无限大障板上小开口有源控制及其次级源和误差传感策略.基于模态展开法建立了无限大障板上矩形开口声传输的数值模型,通过仿真比较不同初级声场条件下,不同次级源和误差传感策略对有源控制系统性能的影响.结果表明,有源控制系统的控制频率上限由开口模态对应的特征频率决定,使用合理的次级源和误差传感策略可提升有源控制的频率上限.对于厚度为31.8 cm的墙上边长为6 cm的方形开口,实验结果表明单通道控制系统和4通道控制系统分别在2750 Hz和3900 Hz以下获得10 dB以上降噪量.这一系统可应用于同时有通风和降噪要求的场合.

关键词: 小开口, 有源控制, 声传输, 组合声源

Abstract:

The openings of an enclosure provide natural ventilation and light but also act as weak parts for noise insulation of the whole structure. Active control systems have been applied in openings in the low frequency range. In this paper,secondary source and error sensing strategies for active control of the sound transmission through a small opening in an infinitely large baffle is investigated to improve the control range to up to 4000 Hz. Based on the modal expansion method,the sound transmission model of rectangular opening with point source incidence is established,and the effects of different secondary source and the error sensor strategies are compared numerically. The simulation results show the upper limit frequency of effective control is determined by the eigen frequency of the acoustic modes of the opening and can be improved to the middle and high frequency range with proper secondary source and error sensing strategies. The experimental results with an opening of 6 cm by 6 cm on a 31.8 cm thick wall demonstrate that the upper limit frequency of effective control is 2750 Hz for a single?channel system and 3900 Hz for a 4?channel system with the noise reduction more than 10 dB. Implementing active control in small openings can be applied to many noise control scenarios which have both noise reduction and ventilation requirements in the middle to high frequency range.

Key words: small opening, active noise control, sound transmission, compound source

中图分类号: 

  • O429

图1

厚度为t的无限大障板上的开口"

图2

数值模型与有限元仿真测量点声压级的比较"

图3

次级源与误差点位于开口侧壁的开口示意图"

图4

次级源个数对有源控制系统降噪量的影响"

图5

初级源从(30°,30°)方向入射4个次级源的单通道系统和4通道系统的降噪量"

图6

位于z = 0.24 m截面的误差传声器的位置"

图7

单次级源的有源控制系统使用不同代价函数的降噪量"

图8

实验环境"

图9

测点处声压级"

1 FieldC D,FrickeF R. Theory and applications of quarter?wave resonators:a prelude to their use for attenuating noise entering buildings through ventilation openings. Applied Acoustics,1998,53(1-3):117-132.
2 KangJ,BrocklesbyM W. Feasibility of applying micro?perforated absorbers in acoustic window systems. Applied Acoustics,2005,66(6):669-689.
3 KwonB,ParkY. Interior noise control with an active window system. Applied Acoustics,2013,74(5):647-652.
4 LamB,ShiC,ShiD Y,et al. Active control of sound through full?sized open windows. Building and Environment,2018,141:16-27.
5 HuangH H,QiuX J,KangJ. Active noise attenuation in ventilation windows. The Journal of the Acoustical Society of America,2011,130(1):176-188.
6 ElliottS J,CheerJ,BhanL,et al. A wavenumber approach to analysing the active control of plane waves with arrays of secondary sources. Journal of Sound and Vibration,2018,419:405-419.
7 QiuX J,HansenC H,LiX. A comparison of near?field acoustic error sensing strategies for the active control of harmonic free field sound radiation. Journal of Sound and Vibration,1998,215(1):81-103.
8 BerryA,QiuX J,HansenC H. Near?field sensing strategies for the active control of the sound radiated from a plate. The Journal of the Acoustical Society of America,1999,106(6):3394-3406.
9 BouwkampC J. Diffraction theory. Reports on Progress in Physics,1954,17(1):35-100.
10 WilsonG P,SorokaW W. Approximation to the diffraction of sound by a circular aperture in a rigid wall of finite thickness. The Journal of the Acoustical Society of America,1964,36(5):289-297.
11 SauterA Jr ,SorokaW W. Sound transmission through rectangular slots of finite depth between reverberant rooms. The Journal of the Acoustical Society of America,1968,44(1):5-11.
12 SgardF,NelisseH,AtallaN. On the modeling of the diffuse field sound transmission loss of finite thickness apertures. The Journal of the Acoustical Society of America,2007,122(1):302-313.
13 TrompetteN,BarbryJ L,SgardF,et al. Sound transmission loss of rectangular and slit?shaped apertures: experimental results and correlation with a modal model. The Journal of the Acoustical Society of America,2009,125(1):31-41.
14 HornerJ L,PeatK S. Higher mode sound transmission from a point source through a rectangular aperture. The Journal of the Acoustical Society of America,2011,129(1):5-11.
15 Poblet?PuigJ,Rodríguez?FerranA. Modal?based prediction of sound transmission through slits and openings between rooms. Journal of Sound and Vibration,2013,332(5):1265-1287.
16 ShaK,YangJ,GanW S. A simple calculation method for the self?and mutual?radiation impedance of flexible rectangular patches in a rigid infinite baffle. Journal of Sound and Vibration,2005,282(1):179-195.
17 WangS P,TaoJ C,QiuX J. Performance of a planar virtual sound barrier at the baffled opening of a rectangular cavity. The Journal of the Acoustical Society of America,2015,138(5):2836-2847.
18 MorseP,IngardK. Theoretical acoustics. New York: McGraw Hill,1968,492-553.
19 杜功焕,朱哲民,龚秀芬. 声学基础. 第2版. 南京:南京大学出版社,2001,554.
[1] 王鹏,林志斌. 基于响度级、耳间互相关系数和中心频率的主观声场宽度预测模型[J]. 南京大学学报(自然科学版), 2019, 55(5): 804-812.
[2] 王旻,林志斌,卢晶. 适用于虚拟低音音质的客观评价方法研究[J]. 南京大学学报(自然科学版), 2019, 55(5): 796-803.
[3] 林远鹏,梁彬,杨京,程建春. 可实现宽频宽角度隔声的薄层通风结构[J]. 南京大学学报(自然科学版), 2019, 55(5): 791-795.
[4] 章康宁, 卢 晶. 指向性小尺度线性扬声器阵列鲁棒性研究[J]. 南京大学学报(自然科学版), 2019, 55(2): 180-190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙 玫,张 森,聂培尧,聂秀山. 基于朴素贝叶斯的网络查询日志session划分方法研究[J]. 南京大学学报(自然科学版), 2018, 54(6): 1132 -1140 .
[2] 周星星,张海平,吉根林. 具有时空特性的区域移动模式挖掘算法[J]. 南京大学学报(自然科学版), 2018, 54(6): 1171 -1182 .
[3] 韩明鸣, 郭虎升, 王文剑. 面向非平衡多分类问题的二次合成QSMOTE方法[J]. 南京大学学报(自然科学版), 2019, 55(1): 1 -13 .
[4] 刘 素, 刘惊雷. 基于特征选择的CP-nets结构学习[J]. 南京大学学报(自然科学版), 2019, 55(1): 14 -28 .
[5] 秦 娅, 申国伟, 赵文波, 陈艳平. 基于深度神经网络的网络安全实体识别方法[J]. 南京大学学报(自然科学版), 2019, 55(1): 29 -40 .
[6] 王伯伟, 聂秀山, 马林元, 尹义龙. 基于语义相似度的无监督图像哈希方法[J]. 南京大学学报(自然科学版), 2019, 55(1): 41 -48 .
[7] 孔 颉, 孙权森, 纪则轩, 刘亚洲. 基于仿射不变离散哈希的遥感图像快速目标检测新方法[J]. 南京大学学报(自然科学版), 2019, 55(1): 49 -60 .
[8] 贾海宁, 王士同. 面向重尾噪声的模糊规则模型[J]. 南京大学学报(自然科学版), 2019, 55(1): 61 -72 .
[9] 严云洋, 瞿学新, 朱全银, 李 翔, 赵 阳. 基于离群点检测的分类结果置信度的度量方法[J]. 南京大学学报(自然科学版), 2019, 55(1): 102 -109 .
[10] 阚 威, 李 云. 基于LSTM的脑电情绪识别模型[J]. 南京大学学报(自然科学版), 2019, 55(1): 110 -116 .