南京大学学报(自然科学版) ›› 2019, Vol. 55 ›› Issue (5): 791–795.doi: 10.13232/j.cnki.jnju.2019.05.011

• • 上一篇    下一篇

可实现宽频宽角度隔声的薄层通风结构

林远鹏,梁彬(),杨京,程建春   

  1. 南京大学声学研究所,南京,210093
  • 收稿日期:2019-03-14 出版日期:2019-09-30 发布日期:2019-11-01
  • 通讯作者: 梁彬 E-mail:liangbin@nju.edu.cn
  • 基金资助:
    国家自然科学基金(11634006);国家重点研发计划(2017YFA0303700)

Thin ventilated layer for broadband and wide⁃angle sound insulation

Yuanpeng Lin,Bin Liang(),Jing Yang,Jianchun Cheng   

  1. The Institute of Acoustics, Nanjing University, Nanjing, 210093, China
  • Received:2019-03-14 Online:2019-09-30 Published:2019-11-01
  • Contact: Bin Liang E-mail:liangbin@nju.edu.cn

摘要:

隔声材料的设计是声学研究的重要主题,并具有重要的应用价值,然而通风条件下的低频宽带隔声仍是具有挑战性的难题.提出一种基于空间折叠结构和中空管道相互组合的双层结构的通风隔声屏障设计,利用层间的类Fano共振耦合对特定频带内的声波能量实现高效隔离,具有外形平整、厚度薄( λ / 5.2 )、通风量高(通风面积>50%)、设计制备简便、隔声的频率及角度范围大等重要优势.数值仿真结果表明该结构可在预设的频率范围内对不同角度入射的低频声波能量实现高效隔离.该设计为新型隔声结构的研制提供了启示,并有望应用于各种同时要求高通风量与高降噪量的特殊场合.

关键词: 声学超材料, Fano共振, 宽带隔声, 通风隔声屏障

Abstract:

As an important problem in acoustics,sound insulation finds applications in a great variety of situations. In the existing schemes,however,there has always been a trade?off between the thinness of sound?insulating devices and their ventilating capabilities,limiting their potentials in the control of low?frequency sound in high ventilation environments. In this paper,a two?layer ventilated sound insulation barrier design based on the combination of a spatial folding structure and a hollow pipe is proposed. The Fano?like resonance coupling between the layers is used to effectively isolate the acoustic energy in a specific frequency band. And the design has many important advantages such as planar profile,thin thickness ( λ / 5.2 ),high ventilation (ventilation area >50%),simple design and preparation,wide working frequency and omnidirectional sound insulation. The numerical simulation results show that the structure can effectively isolate the low?frequency acoustic energy incident at different angles within the preset frequency range. This design provides inspiration for the development of new sound insulation structures and is expected to be applied to a variety of special occasions requiring high ventilation and high noise reduction.

Key words: acoustic metamaterial, Fano resonance, broadband sound insulation, ventilated sound insulator

中图分类号: 

  • O429

图1

通风隔声屏障结构示意图,放大图为所选区域的两个单元内部结构"

图2

模块A和B对应的折叠结构透射谱"

图3

入射角分别为0°,30°和60°情况下的隔声屏障声能量透射谱"

图4

平面波在(a) 0°,(b) 30°和(c) 60°入射时的声压场分布图,点声源入射时在全透射点(d) 2570 Hz与全反射点(e) 2730 Hz的声压场分布图"

图5

(a)通风面积不变时,两模块之间间隔为H 1=3 mm,H 2=5 mm和H 3=7 mm情况下的隔声屏障声能量透射谱,(b)模块间隔不变时,结构单元长度为D 1=36 mm,D 2=44 mm和D 3=52 mm情况下的隔声屏障声能量透射谱"

1 Makris S E , Dym C L , MacGregor S J . Transmission loss optimization in acoustic sandwich panels. The Journal of the Acoustical Society of America,1986,79(6):1833-1843.
2 Kinsler L E , Frey A R , Coppens A B Coppens Kinsler L E, Frey A R Coppens A B ,et al . Fundamentals of Acoustics:The 4th Edition Wiley?VCH,1999:560.
3 Zhang H L , Zhu Y F , Liang B ,et al . Sound insulation in a hollow pipe with subwavelength thickness. Scientific Reports,2017,7:44106.
4 Ma G C , Yang M , Xiao S W ,et al . Acoustic metasurface with hybrid resonances. Nature Materials,2014,13(9): 873-878.
5 Yang Z , Mei J , Yang M ,et al . Membrane?type acoustic metamaterial with negative dynamic mass. Physical Review Letters,2008,101(20):204301.
6 Eriksson L J . Development of the filtered‐U algorithm for active noise control. The Journal of the Acoustical Society of America,1991,89(1):257-265.
7 Zou H S , Qiu X J , Lu J ,et al . A preliminary experimental study on virtual sound barrier system. Journal of Sound and Vibration,2007,307(1-2):379-385.
8 Liu Z Y , Zhang X X , Mao Y W ,et al . Locally resonant sonic materials. Science,2000,289(5485):1734-1736.
9 Tang K , Qiu C Y , Ke M Z ,et al . Anomalous refraction of airborne sound through ultrathin metasurfaces. Scientific Reports,2014,4:6517.
10 Liang Z X , Li J S . Extreme acoustic metamaterial by coiling up space. Physical Review Letters,2012,108(11):114301.
11 Jiang X , Li Y , Liang B ,et al . Convert acoustic resonances to orbital angular momentum. Physical Review Letters,2016,117(3):034301.
12 Sui N , Yan X , Huang T Y ,et al . A lightweight yet sound?proof honeycomb acoustic metamaterial. Applied Physics Letters,2015,106(17):171905.
13 Fan X D , Zhu Y F , Liang B ,et al . Directional radiation of sound waves by a subwavelength source. arXiv:1702.07277,2017.
14 Li Y , Jiang X , Li R Q ,et al . Experimental realization of full control of reflected waves with subwavelength acoustic metasurfaces. Physical Review Applied,2014,2(6):064002.
15 Zhu Y F , Zou X Y , Liang B ,et al . Acoustic one?way open tunnel by using metasurface. Applied Physics Letters,2015,107(11):113501.
16 Zhang H L , Zhu Y F , Liang B ,et al . Omnidirectional ventilated acoustic barrier. Applied Physics Letters,2017,111(20):203502.
17 Genet C , Van Exter M P , Woerdman J P . Fano?type interpretation of red shifts and red tails in hole array transmission spectra. Optics Communica?tions,2003,225(4-6):331-336.
18 Goffaux C , Sánchez?Dehesa J , Yeyati A L ,et al . Evidence of Fano?like interference phenomena in locally resonant materials. Physical Review Letters,2002,88(22):225502.
19 Joe Y S , Satanin A M , Kim C S . Classical analogy of Fano resonances. Physica Scripta,2006,74(2):259-266.
20 Li Y , Liang B , Tao X ,et al . Acoustic focusing by coiling up space. Applied Physics Letters,2012,101(23):233508.
21 Li Y , Liang B , Gu Z M ,et al . Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces. Scientific Reports,2013,3:2546.
22 Li Y , Assouar B M . Acoustic metasurface?based perfect absorber with deep subwavelength thickness. Applied Physics Letters,2016,108(6):063502.
[1] 宋刚永1,黄 蓓1,宋 海2,程 强1*. 基于分形声学超材料的宽带声聚焦透镜[J]. 南京大学学报(自然科学版), 2017, 53(1): 61-.
[2] 蓝 君1,李义丰1,2*. 密度为零的零折射率声学超材料研究[J]. 南京大学学报(自然科学版), 2017, 53(1): 69-.
[3] 朱一凡1,2,范旭东1,2,梁 彬1,2*,杨 京1,2程建春1,2*. 基于声学超材料的无源声学循环器的设计[J]. 南京大学学报(自然科学版), 2017, 53(1): 76-.
[4] 欧阳溯源,孟 杨,景晓东*. 气球状声学超材料软质共振单元研究[J]. 南京大学学报(自然科学版), 2015, 51(7): 10-.
[5] 陆慧颖,宋刚永,程强*. 二维声学超材料透镜的设计与实验[J]. 南京大学学报(自然科学版), 2015, 51(6): 1114-1119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 林 銮,陆武萍,唐朝生,赵红崴,冷 挺,李胜杰. 基于计算机图像处理技术的松散砂性土微观结构定量分析方法[J]. 南京大学学报(自然科学版), 2018, 54(6): 1064 -1074 .
[2] 段新春,施 斌,孙梦雅,魏广庆,顾 凯,冯晨曦. FBG蒸发式湿度计研制及其响应特性研究[J]. 南京大学学报(自然科学版), 2018, 54(6): 1075 -1084 .
[3] 梅世嘉,施 斌,曹鼎峰,魏广庆,张 岩,郝 瑞. 基于AHFO方法的Green-Ampt模型K0取值试验研究[J]. 南京大学学报(自然科学版), 2018, 54(6): 1085 -1094 .
[4] 卢 毅,于 军,龚绪龙,王宝军,魏广庆,季峻峰. 基于DFOS的连云港第四纪地层地面沉降监测分析[J]. 南京大学学报(自然科学版), 2018, 54(6): 1114 -1123 .
[5] 胡 淼,王开军,李海超,陈黎飞. 模糊树节点的随机森林与异常点检测[J]. 南京大学学报(自然科学版), 2018, 54(6): 1141 -1151 .
[6] 洪思思,曹辰捷,王 喆*,李冬冬. 基于矩阵的AdaBoost多视角学习[J]. 南京大学学报(自然科学版), 2018, 54(6): 1152 -1160 .
[7] 魏 桐,童向荣. 基于加权启发式搜索的鲁棒性信任路径生成[J]. 南京大学学报(自然科学版), 2018, 54(6): 1161 -1170 .
[8] 秦 娅, 申国伟, 赵文波, 陈艳平. 基于深度神经网络的网络安全实体识别方法[J]. 南京大学学报(自然科学版), 2019, 55(1): 29 -40 .
[9] 陆慎涛, 葛洪伟, 周 竞. 自动确定聚类中心的移动时间势能聚类算法[J]. 南京大学学报(自然科学版), 2019, 55(1): 143 -153 .
[10] 仲昭朝, 邹 婷, 唐惠炜, 庄 重, 张 臻. 铜胁迫对蚕豆根尖细胞凋亡及线粒体功能的影响[J]. 南京大学学报(自然科学版), 2019, 55(1): 154 -160 .