南京大学学报(自然科学版) ›› 2019, Vol. 55 ›› Issue (5): 840–849.doi: 10.13232/j.cnki.jnju.2019.05.018

• • 上一篇    下一篇

混合配体法合成氨基MIL⁃101(Cr)及其二氧化碳吸附和除湿性能

马益平1,严浩军1,王琼京1,赵亚云2,张秋菊2,孔春龙2()   

  1. 1. 宁波市电力设计院有限公司,宁波,315200
    2. 中国科学院宁波材料技术与工程研究院,宁波,315201
  • 收稿日期:2019-02-27 出版日期:2019-09-30 发布日期:2019-11-01
  • 通讯作者: 孔春龙 E-mail:kongchl@nimte.ac.cn
  • 基金资助:
    宁波市电力设计院科技研发项目

Tailored synthesis of amine⁃functionalized MIL⁃101(Cr) for CO2 and H2O capture via a mixed linker method

Yiping Ma1,Haojun Yan1,Qiongjing Wang1,Yayun Zhao2,Qiuju Zhang2,Chunlong Kong2()   

  1. 1. Ningbo Electric Power Design Institute, Ningbo, 315200, China
    2. Ningbo institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo, 315201, China
  • Received:2019-02-27 Online:2019-09-30 Published:2019-11-01
  • Contact: Chunlong Kong E-mail:kongchl@nimte.ac.cn

摘要:

报道一种原位合成氨基功能化金属框架材料(Metal?Organic Framework,MOF)的方法.该方法采用混合配体使2?氨基对苯二甲酸部分替换金属有机骨架材料MIL?101(Cr)中的对苯二甲酸,以实现材料的氨基功能化.实验结果表明,对苯二甲酸是引导组装MIL?101框架时必不可少的成分,并且2?氨基对苯二甲酸在MOF框架中的含量可以通过化学计量比来调控.氨基功能化MIL?101(Cr)的比表面积大,热稳定性高,空气中分解温度高达300 ℃以上.氨基功能化MIL?101(Cr)的颗粒形貌和纯MIL?101(Cr)总体类似,但是颗粒表面变得粗糙.此外,该功能化材料还表现出优异的CO2和水蒸气吸附能力:30 ℃ 4 MPa下,CO2吸附量可达19 mmol·g-1,CO2/N2理想分离系数达16以上.还在常温下测试了其在密闭容器中对水蒸气的吸附性能,将湿度从71%降低至38%,可作为电力开关柜和端子箱等的潜在除湿装置.

关键词: 金属有机框架材料, 混合配体, 氨基功能化MIL?101(Cr), 水热合成, CO2捕获, 除 湿

Abstract:

A pure phase amine?functionalized metal?organic framework (MOF) was successfully synthesized via a mixed linker method. In particular,partial isomorphic substitution of terephthalic acid in MIL?101(Cr) linker by 2?aminoterephthalic acid is reported. We show that terephthalic acid is dispensable to induce the assembly of frameworks and the content of 2?aminoterephthalic acid linker in the resulting frameworks can be readily controlled by modifying the reaction stoichiometry. The as?prepared amine?functionalized MIL?101(Cr) had a large Brunauer?Emmett?Teller (BET) surface area and high thermal stability,with a decomposition temperature above 300 ℃ in air. The scanning electron microscopy (SEM) reveals that the morphology of amine?functionalized MIL?101(Cr) is similar to the pristine MIL?101(Cr) but the surface becomes rougher. In addition,they exhibited excellent CO2 capture capacity up to 19 mmol·g-1 at a pressure of 4 MPa and a temperature of 30 ℃,as well as high CO2/N2 ideal selectivity up to 16. The excellent CO2 storage capacities as well as high thermal stability make this material a very attractive candidate for CO2 capture. On the other hand,at room temperature,the adsorption performance of H2O in a closed container was tested,and results showed the relative humidity decreased from 71% to 38% in an hour,indicating that the materials could be potentialy used in dehumidification device for electric power switch cabinet and terminal box.

Key words: metal?organic framework, mixed linker, amine?functionalized MIL?101(Cr), hydrothermal synthesis, CO2 capture, dehumidification

中图分类号: 

  • TQ028.8

图1

氨基功能化MIL?101(Cr)合成路线"

图2

(a)元素分析测定NH2?MIL?101?A (A),NH2?MIL?101?B (B),NH2?MIL?101?C (C)和NH2?MIL?101?D (D)中C,H,N的含量;(b)上述四种材料的照片"

图3

未功能化的MIL?101和功能化材料的红外光谱"

图4

NH2?MIL?101?A,NH2?MIL?101?B,NH2?MIL?101?C和NH2?MIL?101?D的PXRD图与MIL?101(Cr)的模拟标准图对比"

图5

粉末样品NH2?MIL?101?A (a),NH2?MIL?101?B (b),NH2?MIL?101?C (c)和NH2?MIL?101?D (d)的SEM图"

图6

四种样品在空气中的TGA图(加热速率为5 ℃?min-1)"

图7

77 K下,NH2?MIL?101?A,NH2?MIL?101?B,NH2?MIL?101?C和NH2?MIL?101?D的N2吸附等温线"

图8

30 ℃时,NH2?MIL?101?A,NH2?MIL?101?B,NH2?MIL?101?C和NH2?MIL?101?D的CO2,N2和CH4的吸附等温线"

图9

0.1 MPa时,材料NH2?MIL?101?A (A),NH2?MIL?101?B (B),NH2?MIL?101?C (C)和NH2?MIL?101?D (D)的CO2/CH4和CO2/N2的理想选择系数"

图10

30 ℃时,NH2?MIL?101?A在不同压力下对CO2/CH4和CO2/N2的理想选择性"

图11

常温除湿性能图"

1 Yang S H , Lin X , Blake A J ,et al . Cation?induced kinetic trapping and enhanced hydrogen adsorption in a modulated anionic metal?organic framework. Nature Chemistry,2009,1(6):487-493.
2 Ma S Q , Zhou H C . Gas storage in porous metal?organic frameworks for clean energy applications. Chemical Communications,2010,46(1):44-53.
3 褚梅,李曦,李娜 等 . 通过与氧化石墨烯复合增强金属有机框架材料MOF(Ni)?74的电催化析氢性能. 材料导报,2018,32(5):1417-1422.
Chu M , Li X , Li N ,et al . Improved electrocatalytic hydrogen?evolution performance of metal?organic framework MOF (Ni)?74 by using graphene oxide decorations. Materials Review,2018,32(5):1417-1422.
4 Horcajada P , Serre C , Maurin G ,et al . Flexible porous metal?organic frameworks for a controlled drug delivery. Journal of the American Chemical Society,2008,130(21):6774-6780.
5 Lee E Y , Jang S Y , Suh M P . Multifunctionality and crystal dynamics of a highly stable,porous metal?organic framework [Zn4O(NTB)2]. Journal of the American Chemical Society,2005,127(17):6374-6381.
6 Chen B L , Liang C D , Yang J ,et al . A microporous metal?organic framework for gas?chromatographic separation of alkanes. Angewandte Chemie International Edition,2006,45(9):1390-1393.
7 Uemura T , Kitaura R , Ohta Y ,et al . Nanochannel?promoted polymerization of substituted acetylenes in porous coordination polymers. Angewandte Chemie International Edition,2006,45(25):4112-4116.
8 Henschel A , Gedrich K , Kraehnert R ,et al . Catalytic properties of MIL?101. Chemical Communications,2008(35):4192-4194.
9 Eddaoudi M , Kim J , Rosi N ,et al . Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science,2002,295(5554):469-472.
10 Volkringer C , Popov D , Loiseau T ,et al . A microdiffraction set?up for nanoporous metal?organic?framework?type solids. Nature Materials,2007,6(10):760-764.
11 Yuan D Q , Zhao D , Sun D F ,et al . An isoreticular series of metal?organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angewandte Chemie International Edition,2010,49(31):5357-5361.
12 Férey G . Hybrid porous solids:Past,present,future. Chemical Society Reviews,2008,37(1):191-214.
13 Sun D F , Ma S Q , Ke Y X ,et al . An interweaving MOF with high hydrogen uptake. Journal of the American Chemical Society,2006,128(12):3896-3897.
14 Wang Z Q , Cohen S M . Postsynthetic modification of metal?organic frameworks. Chemical Society Reviews,2009,38(5):1315-1329.
15 Bauer S , Serre C , Devic T ,et al . High?throughput assisted rationalization of the formation of metal organic frameworks in the iron(III) amino?terephthalate solvothermal system. Inorganic Chemistry,2008,47(17):7568-7576.
16 Mulfort K L , Farha O K , Stern C L ,et al . Post?synthesis alkoxide formation within metal?organic framework materials:a strategy for incorporating highly coordinatively unsaturated metal ions. Journal of the American Chemical Society,2009,131(11):3866-3868.
17 Serra?Crespo P , Ramos?Fernandez E V , Gascon J ,et al . Synthesis and characterization of an amino functionalized MIL?101(Al):separation and catalytic properties. Chemical Materials,2011,23(10):2565-2572.
18 Vaidhyanathan R , Iremonger S S , Shimizu G K H ,et al . Direct observation and quantification of CO2 binding within an amine?functionalized nanoporous solid. Science,2010,330(6004):650-653.
19 周晶晶,刘开宇,孔春龙,等 . 金属有机骨架材料MIL?101(Cr)?NH2的合成及其气体吸附性能. 过程工程学报,2013,13(1):146-151.
Zhou J J , Liu K Y , Kong C L ,et al . Synthesis of MIL?101(Cr)?NH2 and its gas adsorption properties. The Chinese Journal of Process Engineering,2013,13(1):146-151.
20 Wang Z Q , Cohen S M . Postsynthetic covalent modification of a neutral metal?organic framework. Journal of the American Chemical Society,2007,129(41):12368-12369.
21 Wang Z Q , Cohen S M . Tandem modification of metal?organic frameworks by a postsynthetic approach. Angewandte Chemie International Edition,2008,47(25):4699-4702.
22 张帆,张艳梅,张珂琪 等 . 金属有机骨架材料MIL?100(Fe)?NH2的合成、表征及应用. 化工新型材料,2017,45(10):69-72.
Zhang F , Zhang Y M , Zhang K Q ,et al . Preparation and characterization of MIL?100(Fe) and its catalytic performance in knoevenagel condensation. New Chemical Materials,2017,45(10):69-72.
23 Tanabe K K , Wang Z Q , Cohen S M . Systematic functionalization of a metal?organic framework via a postsynthetic modification approach. Journal of the American Chemical Society,2008,130(26):8508-8517.
24 Morris W , Doonan C J , Furukawa H ,et al . Crystals as molecules:postsynthesis covalent functionalization of zeolitic imidazolate frame?works. Journal of the American Chemical Society,2008,130(38):12626-12627.
25 Gadzikwa T , Farha O K , Malliakas C D ,et al . Selective bifunctional modification of a non?catenated metal?organic framework material via "Click" chemistry. Journal of the American Chemical Society,2009,131(38):13613-13615.
26 Lin Y C , Yan Q J , Kong C L ,et al . Polyethyleneimine incorporated metal?organic frameworks adsorbent for highly selective CO2 capture. Scientific Reports,2013,3:1859-1866.
27 Lin Y C , Lin H , Wang H M ,et al . Enhanced selective CO2 adsorption on polyamine/MIL?101(Cr) composites. Journal of Materials Chemistry A,2014,2(35):14658-14665.
28 Deng H , Doonan C J , Furukawa H ,et al . Multiple functional groups of varying ratios in metal?organic frameworks. Science,2010,327(5967):846-850.
29 Férey G , Mellot?Draznieks C , Serre C ,et al . A chromium terephthalate?based solid with unusually large pore volumes and surface area. Science,2005,309(5743):2040-2042.
30 El?Shall M S , Abdelsayed V , Khder A E R S ,et al . Metallic and bimetallic nanocatalysts incorporated into highly porous coordination polymer MIL?101. Journal of Materials Chemistry,2009,19(41):7625-7631.
31 Hong D Y , Hwang Y K , Serre C ,et al . Porous chromium terephthalate MIL?101 with coordinatively unsaturated sites:Surface functionalization,encapsulation,sorption and catalysis. Advanced Functional Materials,2009,19(10):1537-1552.
32 Meyers R A . Encyclopedia of analytical chemistry. Chichester,UK:John Wiley & Sons,Ltd. 2000,10815.
33 Llewellyn P L , Bourrelly S , Serre C ,et al . High uptakes of CO2 and CH4 in mesoporous metal?organic frameworks MIL?100 and MIL?101. Langmuir,2008,24(14):7245-7250.
34 Taylor?Pashow K M L , Rocca J D , Xie Z G ,et al . Postsynthetic modifications of iron?carboxylate nanoscale metal?organic frameworks for imaging and drug delivery. Journal of the American Chemical Society,2009,131(40):14261-14263.
35 Chowdhury P , Bikkina C , Gumma S . Gas adsorption properties of the chromium?based metal organic framework MIL?101. The Journal of Physical Chemistry C,2009,113(16):6616-6621.
36 Saha D , Bao Z B , Feng J ,et al . Adsorption of CO2,CH4,N2O,and N2 on MOF?5,MOF?177,and Zeolite 5A. Environmental Science & Technology,2010,44(5):1820-1826.
37 Li P Y , Tezel F H . Adsorption separation of N2,O2,CO2 and CH4 gases by β?zeolite. Microporous and Mesoporous Materials,2007,98(1-3):94-101.
38 Couck S , Denayer J F M , Baron G V ,et al . An amine?functionalized MIL?53 metal?organic framework with large separation power for CO2 and CH4 . Journal of the American Chemical Society,2009,131(18):6326-6327.
39 Bastin L , Bárcia P S , Hurtado E J ,et al . A microporous metal?organic framework for separation of CO2/N2 and CO2/CH4 by fixed?bed adsorption. The Journal of Physical Chemistry C,2008,112(5):1575-1581.
40 Liu B , Smit B . Molecular simulation studies of separation of CO2/N2,CO2/CH4,and CH4/N2 by ZIFs. The Journal of Physical Chemistry C,2010,114(18):8515-8522.
[1]
王 艳, 张淑仪, 周凤梅, 杨跃涛
.
 溅射与水热混合法制备 ZnO纳米结构薄膜的异常光致发光特性
[J]. 南京大学学报(自然科学版), 2011, 47(2): 218-226.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 许 林,张 巍*,梁小龙,肖 瑞,曹剑秋. 岩土介质孔隙结构参数灰色关联度分析[J]. 南京大学学报(自然科学版), 2018, 54(6): 1105 -1113 .
[2] 卢 毅,于 军,龚绪龙,王宝军,魏广庆,季峻峰. 基于DFOS的连云港第四纪地层地面沉降监测分析[J]. 南京大学学报(自然科学版), 2018, 54(6): 1114 -1123 .
[3] 王 倩,聂秀山,耿蕾蕾,尹义龙. D2D通信中基于Q学习的联合资源分配与功率控制算法[J]. 南京大学学报(自然科学版), 2018, 54(6): 1183 -1192 .
[4] 孔 颉, 孙权森, 纪则轩, 刘亚洲. 基于仿射不变离散哈希的遥感图像快速目标检测新方法[J]. 南京大学学报(自然科学版), 2019, 55(1): 49 -60 .
[5] 贾海宁, 王士同. 面向重尾噪声的模糊规则模型[J]. 南京大学学报(自然科学版), 2019, 55(1): 61 -72 .
[6] 顾健伟, 曾 诚, 邹恩岑, 陈 扬, 沈 艺, 陆 悠, 奚雪峰. 基于双向注意力流和自注意力结合的机器阅读理解[J]. 南京大学学报(自然科学版), 2019, 55(1): 125 -132 .
[7] 安 晶, 艾 萍, 徐 森, 刘 聪, 夏建生, 刘大琨. 一种基于一维卷积神经网络的旋转机械智能故障诊断方法[J]. 南京大学学报(自然科学版), 2019, 55(1): 133 -142 .
[8] 王蔚, 胡婷婷, 冯亚琴. 基于深度学习的自然与表演语音情感识别[J]. 南京大学学报(自然科学版), 2019, 55(4): 660 -666 .
[9] 王博闻, 史江峰, 史逝远, 张伟杰, 马晓琦, 赵业思. 基于遥感数据定位老龄树群[J]. 南京大学学报(自然科学版), 2019, 55(4): 699 -707 .
[10] 李勤,陆现彩,张立虎,程永贤,刘鑫. 蒙脱石层间阳离子交换的分子模拟[J]. 南京大学学报(自然科学版), 2019, 55(6): 879 -887 .