南京大学学报(自然科学版) ›› 2019, Vol. 55 ›› Issue (6): 879–887.doi: 10.13232/j.cnki.jnju.2019.06.001

• 应用矿物学 •    下一篇

蒙脱石层间阳离子交换的分子模拟

李勤,陆现彩(),张立虎,程永贤,刘鑫   

  1. 内生金属矿床成矿机制研究国家重点实验室,南京大学地球科学与工程学院,南京,210023
  • 收稿日期:2019-08-27 出版日期:2019-11-30 发布日期:2019-11-29
  • 通讯作者: 陆现彩 E-mail:xcljun@nju.edu.cn
  • 基金资助:
    国家自然科学基金(41425009)

Molecular simulation of interlayer cation exchange of montmorillonite

Qin Li,Xiancai Lu(),Lihu Zhang,Yongxian Cheng,Xin Liu   

  1. State Key Laboratory for Mineral Deposits Research,School of Earth Sciences and Engineering,Nanjing University,Nanjing,210023,China
  • Received:2019-08-27 Online:2019-11-30 Published:2019-11-29
  • Contact: Xiancai Lu E-mail:xcljun@nju.edu.cn

摘要:

蒙脱石是地表最为常见的一种粘土矿物,层间阳离子交换是蒙脱石矿物的基本属性之一,并因此而成为被广泛应用的矿物材料.通过研究钠基蒙脱石(两层水状态)的阳离子交换特征,在分子层次上探究了K+,Mg2+,Ca2+,Ba2+从环境溶液进入蒙脱石层间并与Na+离子的交换行为.模拟结果显示不同离子交换量顺序为:Ba2+>Ca2+>K+>Mg2+,即水化能力弱的阳离子更容易和层间Na+离子发生交换;离子的水化能力还与其在蒙脱石层间的空间分布密切相关,水化能力最强的Mg2+离子远离蒙脱石表面而倾向于出现在层间区域的中间,Ca2+与Ba2+离子则部分出现在结构层表面四面体取代位置;K+离子的分布具有特殊性,被紧缚在硅氧烷六元环中央空穴处.阳离子进入蒙脱石层间是自由能下降的过程,进入层间的阳离子活动性远低于孔隙流体中的离子,其中Ba2+离子的自扩散系数最低.本文在原子层次上揭示的蒙脱石阳离子交换动力学过程有助于加深对粘土矿物?流体相互作用机制的理解.

关键词: 蒙脱石, 阳离子交换, 水化能力, 活动性

Abstract:

Montmorillonite is the most commonly distributed clay mineral in earth surface system. Exchangeability of interlayer cation is one of its characteristic properties,which makes it an important natural materials for various applications. Different cations (K+,Mg2+,Ca2+,Ba2+) exchange from montmorillonite interparticle pore fluid into clay interlayer space has been studied at atomistic level by using classical molecular dynamics simulation. The final cation exchange capacities follow the order of Ba2+>Ca2+>K+>Mg2+,as opposed to the hydration ability of cations. In the montmorillonite interlayer,Mg2+ is absolutely hydrated by waters and far away from the montmorillonite surface. Parts of Ca2+ and Ba2+ ions may closely hover above the tetrahedral substitution position of the clay,however,most K+ ions are bound by the six?membered ring of the clay surface. The migration of cation from fluid to clay interlayer space corresponds a process with decrease in free energy. The mobility of interlayer cations is much lower than that in fluid,especially the self?diffusion of Ba2+ is the lowest. The disclosed dynamic process of cation exchange of montmorillonite at atomistic level will enhance the understanding of clay?fluid interactions.

Key words: montmorillonite, cation exchange, hydration ability, mobility

中图分类号: 

  • P574

图1

粘土-流体模拟的初始构型图"

图2

蒙脱石层间阳离子含量随模拟时间的变化"

图3

蒙脱石层间阳离子的自相关函数"

表1

不同阳离子的扩散系数"

阳离子

蒙脱石层间扩散系数

(10-9 m2·s-1)

溶液中扩散系数

(10-9 m2·s-1)

层间扩散系数/溶液扩散系
K+0.5111.8460.277
Mg2+0.2940.4880.807
Ca2+0.1890.4490.421
Ba2+0.0860.1320.651

图4

阳离子与蒙脱石表面氧原子(ob)和水分子中氧原子(ow)的径向分布与配位数"

图5

阳离子进入蒙脱石层间的自由能变化"

1 SchoonheydtR A,JohnstonC T. Surface and interface chemistry of clay minerals∥Bergaya F,Theng B K G. Handbook of Clay Science. Amsterdam,Holland:Elsevier,2007:87-114.
2 YaT L,SparksD L. Cation?exchange kinetics on montmorillonite using pressure?jump relaxation. Soil Science Society of America Journal,1993,57(1):42-46.
3 开炜,蔡元峰,蔡进功等. 不同粘土矿物对赖氨酸的吸附行为对比研究. 高校地质学报,2018,24(5):671-680.
KaiW,CaiY F,CaiJ G,et al. Comparative study of the adsorption of L?lysine on the different clay minerals. Geological Journal of China Universities,2018,24(5):671-680.
4 WayJ T. On the power of soils to absorb manure. Journal of the Royal Agricultural Society of England,1850,11:313-379.
5 MarshallC E,GuptaR S. Base exchange equilibria in clays. Journal of the Society of Chemical Industry,1933,52:433.
6 VanselowA P. Equilibria of the base?exchange reactions of bentonites,permutites,soil colloids,and zeolites. Soil Scienec,1932,33(2):95-114.
7 GainsG LJr,ThomasH C. Adsorption studies on clay minerals. II. A formulation of the thermodynamics of exchange adsorption. The Journal of Chemical Physics,1953,21(4):714-718.
8 WiegnerG,JennyH. Ueber basenaustausch an permutiten. Kolloid?Zeitschrift,1927,42(3):268-272.
9 VerburgK,PhilippeB. Hysteresis in the binary exchange of cations on 2:1 clay minerals:a critical review. Clays and Clay Minerals,1994,42(2):207-220.
10 ErikssonE. Cation exchange equilibria on clay minerals. Soil Science,1952,74(2):103-114.
11 NealC,CooperD M. Extended version of gouy?chapman electrostatic theory as applied to the exchange behavior of clay in natural waters. Clays and Clay Minerals,1983,31(5):367-376.
12 EberlD D. Alkali cation selectivity and fixation by clay minerals. Clays and Clay Minerals,1980,28(3):161-172.
13 MaesA,CremersA. Highly selective ion exchanger in clay minerals and zeolites∥Davis J A,Hayes K F. Geochemical Processes at Mineral Surfaces. Washington DC,USA:American Chemical Society,1986:254-295.
14 LairdD A,ShangC. Relationship between cation exchange selectivity and crystalline swelling in expanding 2:1 phyllosilicates. Clays and Clay Minerals,1997,45(5):381-389.
15 ParkS H,SpositoG. Structure of water adsorbed on a mica surface. Physical Review Letters,2002,89(8):085501.
16 ChangF R C,SkipperN T,SpositoG. Computer simulation of interlayer molecular structure in sodium montmorillonite hydrates. Langmuir,1995,11(7):2734-2741.
17 Chávez?PáezM,Van WorkumK,de PabloL,et al. Monte carlo simulations of wyoming sodium montmorillonite hydrates. The Journal of Chemical Physics,2001,114(3):1405-1413.
18 LoewensteinW. The distribution of aluminum in the tetrahedra of silicates and aluminates. American Mineralogist,1954,39(1-2):92-96.
19 TournassatC,BourgI C,HolmboeM,et al. Molecular dynamics simulations of anion exclusion in clay interlayer nanopores. Clays and Clay Minerals,2016,64(4):374-388.
20 ZhouJ H,LuX C,BoekE S. Changes in the interlayer structure and thermodynamics of hydrated montmorillonite under basin conditions:molecular simulation approaches. Clays and Clay Minerals,2016,64(4):503-511.
21 PlimptonS. Fast parallel algorithms for short?range molecular dynamics. Journal of Computational Physics,1995,117(1):1-19.
22 CyganR T,LiangJ J,KalinichevA G. Molecular models of hydroxide,oxyhydroxide,and clay phases and the development of a general force field. The Journal of Physical Chemistry B,2004,108(4):1255-1266.
23 PouvreauM,GreathouseJ A,CyganR T,et al. Structure of hydrated gibbsite and brucite edge surfaces:DFT results and further development of the clayff classical force field with metal–O–H angle bending terms. The Journal of Physical Chemistry C,2017,121(27):14757-14771.
24 BerendsenH J C,PostmaJ P M,van GunsterenW F,et al. Interaction models for water in relation to protein hydration∥Proceedings of the 14th Jerusalem Symposium on Quantum Chemistry and Biochemistry Held in Jerusalem. Springer Berlin Heidelberg,1981:331-342.
25 RyckaertJ P,CiccottiG,BerendsenH J C. Numerical integration of the cartesian equations of motion of a system with constraints:molecular dynamics of n?alkanes. Journal of Computational Physics,1977,23(3):327-341.
26 WadaK,HaradaY. Effects of temperature on the measured cation?exchange capacities of ando soils. Journal of Soil Science,1971,22(1):109-117.
27 徐敏,盛玲,季峻峰等. 蒙脱石对赖氨酸和壳聚糖的吸附实验研究. 高校地质学报,2014,20(4):537-548.
XuM,LinS,JiJ F,et al. The Study of adsorption of L?lysine and chitosan on montmorillonite. Geological Journal of China Universities,2014,20(4):537-548.
28 TournassatC,BiziM,BraibantG,et al. Influence of montmorillonite tactoid size on Na?Ca cation exchange reactions. Journal of Colloid and Interface Science,2011,364(2):443-454.
29 GillmanGP. Effects of ph and ionic strength on the cation exchange capacity of soils with variable charge. Soil Research,1981,19(1):93-96.
30 ZhangP C,BradyP V,ArthurS E,et al. Adsorption of barium(II) on montmorillonite:an exafs study. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001,190(3):239-249.
31 ShainbergI,AlperovitchN I,KerenR. Charge density and Na?K?Ca exchange on smectites. Clays and Clay Minerals,1987,35(1):68-73.
32 CarsonC D,DixonJ B. Potassium selectivity in certain montmorillonitic soil clays. Soil Science Society of America Journal,1972,36(5):838-843.
33 LiuX D,LuX C. A thermodynamic understanding of clay?swelling inhibition by potassium ions. Angewandte Chemie International Edition,2006,45(38):6300-6303.
34 AltmannS,TournassatC,GoutelardF,et al. Diffusion?driven transport in clayrock formations. Applied Geochemistry,2012,27(2):463-478.
35 JoH Y,BensonC H,EdilT B. Rate?limited cation exchange in thin bentonitic barrier layers. Canadian Geotechnical Journal,2006,43(4):370-391.
36 LiuP,HarderE,BerneB J. On the calculation of diffusion coefficients in confined fluids and interfaces with an application to the liquid?vapor interface of water. The Journal of Physical Chemistry B,2004,108(21):6595-6602.
37 GreathouseJ A,CyganR T,FredrichJ T,et al. Molecular dynamics simulation of diffusion and electrical conductivity in montmorillonite interlayers. The Journal of Physical Chemistry C,2016,120(3):1640-1649.
38 RotenbergB,MarryV,VuilleumierR,et al. Water and ions in clays:unraveling the interlayer/micropore exchange using molecular dynamics. Geochimica et Cosmochimica Acta,2007,71(21):5089-5101.
39 ZhangL H,LuX C,LiuX D,et al. Hydration and mobility of interlayer ions of (Nax,Cay)?montmorillonite:a molecular dynamics study. The Journal of Physical Chemistry C,2014,118(51):29811-29821.
40 TeppenB J,MillerD M. Hydration energy determines isovalent cation exchange selectivity by clay minerals. Soil Science Society of America Journal,2006,70(1):31-35.
41 RotenbergB,MorelJ P,MarryV,et al. On the driving force of cation exchange in clays:insights from combined microcalorimetry experiments and molecular simulation. Geochimica et Cosmochimica Acta,2009,73(14):4034-4044.
42 TorrieG M,ValleauJ P. Nonphysical sampling distributions in monte carlo free?energy estimation:Umbrella sampling. Journal of Computational Physics,1977,23(2):187-199.
[1] 吴珍云,尹宏伟,李长圣,孙业君,李丽梅,杜航,何奕成,刘博雅. 断陷盆地正反转构造实验模拟及对茅东断裂带的启示[J]. 南京大学学报(自然科学版), 2019, 55(5): 869-878.
[2] 王广辉,杨高东,周 政,张志炳. 丙酸异龙脑酯的合成、反应热力学和反应动力学研究[J]. 南京大学学报(自然科学版), 2019, 55(3): 486-497.
[3] 齐小刚,张 权*. 认知无线电网络中一种基于主用户活动性预测的拓扑控制方法[J]. 南京大学学报(自然科学版), 2018, 54(4): 848-.
[4] 聂慧琴,许如银,陶 海,周 政*,张志炳*. 莰烯与2-甲基-1,3-丙二醇烷氧基化反应的研究[J]. 南京大学学报(自然科学版), 2015, 51(4): 692-699.
[5] 赵玉连1,代群威1,2**,董发勤2,蒋沁芮1,唐 俊1,陈 武3. 两株土壤菌与蒙脱石相互作用的实验研究*[J]. 南京大学学报(自然科学版), 2013, 49(6): 767-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 邱 浩,王欣然*. 二硫化钼的电子输运与器件[J]. 南京大学学报(自然科学版), 2014, 50(3): 280 .
[2] 王学锋1,2*,徐永兵1,2*,张 荣1,2. 低维磁性耦合体系的新物性及电/光场调控进展[J]. 南京大学学报(自然科学版), 2014, 50(3): 309 .
[3] 骆乾坤*,吴剑锋2,杨运3,钱家忠1. 渗透系数空间变异程度对进化算法优化结果影响评价[J]. 南京大学学报(自然科学版), 2015, 51(1): 60 -66 .
[4] 孙大军1,2, 王永恒1,2*, 勇俊1,2. 实频数据技术在水声换能器宽带匹配中的应用[J]. 南京大学学报(自然科学版), 2015, 51(6): 1182 -1188 .
[5] 杨政予1,王新龙1
. 茅山军号声现象的进一步研究[J]. 南京大学学报(自然科学版), 2015, 51(6): 1097 -1106 .
[6] 张亚平,2,万宇1,2,聂青3,阮晓红1,2*,王子健4. 湖泊水体中氮的生物地球化学过程及其生态学意义[J]. 南京大学学报(自然科学版), 2016, 52(1): 5 -15 .
[7] 李荣富1,2,罗跃辉 ,2,曾洪玉1,2,阮晓红1,2*,刘丛强3*. 稳定同位素技术在环境水体氮的生物地球化学循环研究中的应用[J]. 南京大学学报(自然科学版), 2016, 52(1): 16 -26 .
[8] 李 婷1,张超智1,2*,沈 丹1,袁 阳1. 石墨烯和氧化石墨烯的生物体毒性研究进展[J]. 南京大学学报(自然科学版), 2016, 52(2): 235 .
[9] 涂 臻*,卢 晶 . 散射条件下小尺度扬声器阵列声聚焦算法鲁棒性研究[J]. 南京大学学报(自然科学版), 2016, 52(2): 382 .
[10] 葛 勇1,孙宏祥1,2*,袁寿其1,夏建平1,管义钧1 . 含对称三角形腔的波导管中宽带低频隔声效应[J]. 南京大学学报(自然科学版), 2016, 52(4): 619 .