南京大学学报(自然科学版) ›› 2019, Vol. 55 ›› Issue (1): 133–142.doi: 10.13232/j.cnki.jnju.2019.01.014

• • 上一篇    下一篇

一种基于一维卷积神经网络的旋转机械智能故障诊断方法

安 晶1,2,艾 萍2*,徐 森3,刘 聪1,夏建生1,刘大琨1   

  1. 1. 盐城工学院机械工程学院,盐城,224051; 2. 河海大学计算机与信息学院,南京,211100; 3. 盐城工学院信息工程学院,盐城,224051
  • 接受日期:2018-12-08 出版日期:2019-02-01 发布日期:2019-01-26
  • 通讯作者: 艾 萍, E-mail:aip@163.com,aip@hhu.edu.cn E-mail:aip@163.com,aip@hhu.edu.cn
  • 基金资助:
    国家自然科学基金(51420105014,51505408),江苏省“333工程”,江苏省高等学校自然科学研究项目(18KJB520050);江苏高校品牌专业建设工程“机械设计制造及其自动化”(PPZY2015B123)

An intelligent fault diagnosis method for rotating machinery based on one dimensional convolution neural network

An Jing1,2,Ai Ping2*,Xu Sen3,Liu Cong1,Xia Jiansheng1,Liu Dakun1   

  1. 1. School of Mechanical Engineer,Yancheng Institute of Technology,Yancheng,224051,China; 2. College of Computer and Information Engineering,Hohai University,Nanjing,211100,China; 3. School of Information Engineering,Yancheng Institute of Technology,Yancheng,224051,China
  • Accepted:2018-12-08 Online:2019-02-01 Published:2019-01-26
  • Contact: Ai Ping, E-mail:aip@163.com,aip@hhu.edu.cn E-mail:aip@163.com,aip@hhu.edu.cn

摘要: 状态监测和故障诊断对于维护系统性能和保证运行安全具有重要意义. 针对传统智能识别方法需要复杂的特征提取过程和大量的诊断经验等问题,结合振动信号自身的一维性的特点,提出一种基于一维卷积神经网络(1-Dimensional Convolutional Neural Network,1DCNN)的旋转机械智能故障诊断方法. 首先将数据信号通过傅里叶变换转换成频域信号并进行预处理,然后训练卷积神经网络自动提取特征,最后通过Softmax回归进行分类. 在基准数据集上的实验结果表明,1DCNN模型不仅能有效地从原始信号中进行多种工况、多种故障位置、多种故障程度的特征提取和诊断,而且具有很高的故障识别精度,获得了优于主流故障诊断方法的结果.

关键词: 卷积神经网络, 一 维, 故障诊断, 特征提取

Abstract: Condition monitoring and fault diagnosis are important for maintaining the system performance and guaranteeing the operational safety. The traditional intelligent identification method requires a complex feature extraction process and much diagnosis experience. Considering the characteristics of one dimension of vibration signals,a new method of intelligent fault diagnosis based on 1-Dimensional Convolutional Neural Network(1DCNN)is presented. Firstly,the data signal is converted into the frequency domain signal by Fourier Transformation and preprocessed. Then,the convolution neural network is trained to automatically extract the features,and finally the classification is made through Softmax regression. Experimental results on the benchmark datasets indicate that 1DCNN model can not only effectively extract features and diagnosis of multiple working conditions,multiple fault locations and different health conditions,but also be able to achieve higher identification accuracy than existing methods.

Key words: convolutional neural network, one-dimensional, fault diagnosis, feature extraction

中图分类号: 

  • TP183
[1] Hinton G E,Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science,2006,313(5786):504-507.
[2] Krizhevsky A,Sutskever I,Hinton G E. Imagenet classification with deep convolutional neural networks ∥ Proceedings of the 25thInternational Conference on Neural Information Processing Systems. Lake Tahoe,NV,USA:ACM,2012:1097-1105.
[3] Graves A,Mohamed A R,Hinton G. Speech recognition with deep recurrent neural networks ∥ Proceedings of 2013 IEEE International Conference on Acoustics,Speech and Signal Processing. Vancouver,Canada:IEEE,2013:6645-6649.
[4] Sarikaya R,Hinton G E,Deoras A. Application of deep belief networks for natural language understanding. IEEE/ACM Transactions on Audio,Speech,and Language Processing,2014,22(4):778-784.
[5] Di Lena P,Nagata K,Baldi P. Deep architectures for protein contact map prediction. Bioinformatics,2012,28(19):2449-2457.
[6] Yu D,Deng L. Deep learning and its applications to signal and information processing. IEEE Signal Processing Magazine,2011,28(1):145-154.
[7] Tamilselvan P,Wang P F. Failure diagnosis using deep belief learning based health state classification. Reliability Engineering & System Safety,2013,115:124-135.
[8] 赵光权,葛强强,刘小勇等. 基于DBN的故障特征提取及诊断方法研究. 仪器仪表学报,2016,37(9):1946-1953.(Zhao G Q,Ge Q Q,Liu X Y,et al. Fault feature extraction and diagnosis method based on deep belief network. Chinese Journal of Scientific Instrument,2016,37(9):1946-1953.)
[9] 李巍华,单外平,曾雪琼. 基于深度信念网络的轴承故障分类识别. 振动工程学报,2016,29(2):340-347.(Li W H,Shan W P,Zeng X Q. Bearing fault identification based on deep belief network. Journal of Vibration Engineering,2016,29(2):340-347.)
[10] Tran V T,AlThobiani F,Ball A. An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks. Expert Systems with Applications,2014,41(9):4113-4122.
[11] Liao L X,Jin W J,Pavel R. Enhanced restricted Boltzmann machine with prognosability regularization for prognostics and health assessment. IEEE Transactions on Industrial Electronics,2016,63(11):7076-7083.
[12] 雷亚国,贾 峰,周 昕等. 基于深度学习理论的机械装备大数据健康监测方法. 机械工程学报,2015,51(21):49-56.(Lei Y G,Jia F,Zhou X,et al. A deep learning-based method for machinery health monitoring with big data. Journal of Mechanical Engineering,2015,51(21):49-56.)
[13] Jia F,Lei Y G,Lin J,et al. Deep neural networks:A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mechanical Systems and Signal Processing,2016,72-73:303-315.
[14] Sun W J,Shao S Y,Zhao R,et al. A sparse auto-encoder-based deep neural network approach for induction motor faults classification. Measurement,2016,89:171-178.
[15] Xia M,Li T,Liu L Z,et al. Intelligent fault diagnosis approach with unsupervised feature learning by stacked denoising autoencoder. IET Science,Measurement & Technology,2017,11(6):687-695.
[16] Lecun Y,Bottou L,Bengio Y,et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE,1998,86(11):2278-2324.
[17] 周飞燕,金林鹏,董 军. 卷积神经网络研究综述. 计算机学报,2017,40(6):1229-1251.(Zhou F Y,Jin L P,Dong J. Review of convolutional neural network. Chinese Journal of Computers,2017,40(6):1229-1251.)
[18] Chen Z Q,Li C,Sanchez R V. Gearbox fault identification and classification with convolutional neural networks. Shock and Vibration,2015:390134.
[19] Janssens O,Slavkovikj V,Vervisch B,et al. Convolutional neural network based fault detection for rotating machinery. Journal of Sound and Vibration,2016,377:331-345.
[20] Guo X J,Chen L,Shen C Q. Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis. Measurement,2016,93:490-502.
[21] Zhang W,Peng G L,Li C H. Bearings fault diagnosis based on convolutional neural networks with 2-D representation of vibration signals as input. MATEC Web of Conferences,2017,95(8):13001.
[22] Sun W J,Zhao R,Yan R Q,et al. Convolutional discriminative feature learning for induction motor fault diagnosis. IEEE Transactions on Industrial Informatics,2017,13(3):1350-1359.
[23] Xia M,Li T,Xu L,et al. Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks. IEEE/ASME Transactions on Mechatronics,2018,23(1):101-110.
[24] Palaz D,Collobert R,Doss M M. Estimating phoneme class conditional probabilities from raw speech signal using convolutional neural networks. Computer Science,2013:1766-1770.
[25] Zeiler M D. ADADELTA:An adaptive learning rate method. 2012,arXiv:1212.5701.
[26] Hinton G E,Srivastava N,Krizhevsky A,et al. Improving neural networks by preventing co-adaptation of feature detectors. 2012,arXiv:1207.0580.
[27] Lou X,Loparo K A. Bearing fault diagnosis based on wavelet transform and fuzzy inference. Mechanical Systems and Signal Processing,2004,18(5):1077-1095.
[28] Lu C,Wang Z Y,Zhou B. Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification. Advanced Engineering Informatics,2017,32:139-151.
[29] van der Maaten L,Hinton G. Visualizing data using t-SNE. Journal of Machine Learning Research,2008,9(11):2579-2605.
[1] 朱伟,张帅,辛晓燕,李文飞,王骏,张建,王炜. 结合区域检测和注意力机制的胸片自动定位与识别[J]. 南京大学学报(自然科学版), 2020, 56(4): 591-600.
[2] 梅志伟,王维东. 基于FPGA的卷积神经网络加速模块设计[J]. 南京大学学报(自然科学版), 2020, 56(4): 581-590.
[3] 赵子龙,赵毅强,叶茂. 基于FPGA的多卷积神经网络任务实时切换方法[J]. 南京大学学报(自然科学版), 2020, 56(2): 167-174.
[4] 陈石,张兴敢. 基于小波包能量熵和随机森林的级联H桥多电平逆变器故障诊断[J]. 南京大学学报(自然科学版), 2020, 56(2): 284-289.
[5] 王吉地,郭军军,黄于欣,高盛祥,余正涛,张亚飞. 融合依存信息和卷积神经网络的越南语新闻事件检测[J]. 南京大学学报(自然科学版), 2020, 56(1): 125-131.
[6] 范 君, 业巧林, 业 宁. 基于线性鉴别的无参数局部保持投影算法[J]. 南京大学学报(自然科学版), 2019, 55(2): 211-220.
[7] 狄 岚, 何锐波, 梁久祯. 基于可能性聚类和卷积神经网络的道路交通标识识别算法[J]. 南京大学学报(自然科学版), 2019, 55(2): 238-250.
[8] 胡 太, 杨 明. 结合目标检测的小目标语义分割算法[J]. 南京大学学报(自然科学版), 2019, 55(1): 73-84.
[9] 阚建飞, 任永峰, 翟继友, 董学育, 霍 瑛. 基于稀疏模型和Gabor小波字典的跟踪算法[J]. 南京大学学报(自然科学版), 2019, 55(1): 85-91.
[10] 梁蒙蒙1,周 涛1,2*,夏 勇3,张飞飞1,杨 健1. 基于随机化融合和CNN的多模态肺部肿瘤图像识别[J]. 南京大学学报(自然科学版), 2018, 54(4): 775-.
[11]  万鸣华1,2*,杨国为1,赖志辉2.  最大间距准则框架下的多流形局部图嵌入(MLGE/MMC)算法[J]. 南京大学学报(自然科学版), 2018, 54(2): 462-.
[12] 赵天青, 梁旭斌,许学忠*,蔡宗义,孙迪峰. EMD在目标声信号特征提取中的应用研究[J]. 南京大学学报(自然科学版), 2015, 51(7): 102-.
[13] 季舒瑶,袁飞*,程恩,陈柯宇. 基于声传播特性的供水管道泄漏检测与分类[J]. 南京大学学报(自然科学版), 2015, 51(7): 64-.
[14]  陈素根1,2, 吴小俊1*, 曹俊峰1
.  训练样本类内局部调整的人脸识别方法[J]. 南京大学学报(自然科学版), 2015, 51(1): 132-138.
[15] 陈 冲1,尤鸣宇1*,刘家铭1,王 铮1,李国正1,徐镶怀2,邱忠民2. 基于高频子带特征的咳嗽检测方法[J]. 南京大学学报(自然科学版), 2015, 51(1): 157-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 梅世嘉,施 斌,曹鼎峰,魏广庆,张 岩,郝 瑞. 基于AHFO方法的Green-Ampt模型K0取值试验研究[J]. 南京大学学报(自然科学版), 2018, 54(6): 1085 -1094 .
[2] 许 林,张 巍*,梁小龙,肖 瑞,曹剑秋. 岩土介质孔隙结构参数灰色关联度分析[J]. 南京大学学报(自然科学版), 2018, 54(6): 1105 -1113 .
[3] 卢 毅,于 军,龚绪龙,王宝军,魏广庆,季峻峰. 基于DFOS的连云港第四纪地层地面沉降监测分析[J]. 南京大学学报(自然科学版), 2018, 54(6): 1114 -1123 .
[4] 曲昭伟, 杨凯翔, 王晓茹, 李百威. 基于语义行为和社交关联的好友推荐模型[J]. 南京大学学报(自然科学版), 2018, 54(6): 1124 -1131 .
[5] 王 倩,聂秀山,耿蕾蕾,尹义龙. D2D通信中基于Q学习的联合资源分配与功率控制算法[J]. 南京大学学报(自然科学版), 2018, 54(6): 1183 -1192 .
[6] 孔 颉, 孙权森, 纪则轩, 刘亚洲. 基于仿射不变离散哈希的遥感图像快速目标检测新方法[J]. 南京大学学报(自然科学版), 2019, 55(1): 49 -60 .
[7] 胡 太, 杨 明. 结合目标检测的小目标语义分割算法[J]. 南京大学学报(自然科学版), 2019, 55(1): 73 -84 .
[8] 严云洋, 瞿学新, 朱全银, 李 翔, 赵 阳. 基于离群点检测的分类结果置信度的度量方法[J]. 南京大学学报(自然科学版), 2019, 55(1): 102 -109 .
[9] 顾健伟, 曾 诚, 邹恩岑, 陈 扬, 沈 艺, 陆 悠, 奚雪峰. 基于双向注意力流和自注意力结合的机器阅读理解[J]. 南京大学学报(自然科学版), 2019, 55(1): 125 -132 .
[10] 仲昭朝, 邹 婷, 唐惠炜, 庄 重, 张 臻. 铜胁迫对蚕豆根尖细胞凋亡及线粒体功能的影响[J]. 南京大学学报(自然科学版), 2019, 55(1): 154 -160 .