南京大学学报(自然科学版) ›› 2019, Vol. 55 ›› Issue (1): 61–72.doi: 10.13232/j.cnki.jnju.2019.01.006

• • 上一篇    下一篇

面向重尾噪声的模糊规则模型

贾海宁1,2*,王士同1,2   

  1. 1.江南大学数字媒体学院,无锡,214122;2.江苏省媒体设计与软件技术重点实验室,江南大学,无锡,214122
  • 接受日期:2018-12-07 出版日期:2019-02-01 发布日期:2019-01-26
  • 通讯作者: 贾海宁, E-mail:jayazle@163.com E-mail:jayazle@163.com
  • 基金资助:
    国家自然科学基金(61772198)

Rule-based fuzzy model for heavy-tailed noisy data

Jia Haining1,2*,Wang Shitong1,2   

  1. 1.School of Digital Media,Jiangnan University,Wuxi,214122,China;2.Key Laboratory of Media Design and Software Technology of Jiangsu Province,Jiangnan University,Wuxi,214122,China
  • Accepted:2018-12-07 Online:2019-02-01 Published:2019-01-26
  • Contact: Jia Haining, E-mail:jayazle@163.com E-mail:jayazle@163.com

摘要: 针对一般模糊规则模型对含有重尾噪声的数据集鲁棒性较差的问题,提出了面向重尾噪声的模糊规则(Rule-based Fuzzy Model for Heavy-tailed Noisy Data,HtRbF)模型. 该模型使用了两种新的聚类方法,学生t分布均值聚类算法(Student’s t-distribution C-Means,StCM)和学生t分布下的背景模糊聚类方法(Student’s t-distribution Context Fuzzy C-Means,StCFCM),并将其应用在初始规则和新规则的生成中,使模型在重尾噪声场景下生成更为准确的规则,有效减少了模型的输出误差,使其更接近真实输出. HtRbF模型具有良好的抗噪能力,通过对数据集添加不同类型的重尾噪声进行系统性实验,实验结果证明了HtRbF模型的有效性.

关键词: 重尾噪声, 学生t分布, 模糊规则, 学生t分布模糊聚类, 学生t分布背景模糊聚类

Abstract: Based on student’s t-distribution,a novel rule-based fuzzy model called Rule-based Fuzzy Model for Heavy-tailed Noisy Data(HtRbF)with strong robustness to heavy-tailed noisy data is proposed in this paper. In the proposed model HtRbF,both Student’s t-distribution C-Means(StCM)and Student’s t-distribution Context Fuzzy C-Means(StCFCM)are designed to generate initial fuzzy rules and their refined fuzzy rules so as to make the proposed model more accurate for heavy tailed noisy scenes. In the inference part,the proposed model HtRbF estimates the error of each initial fuzzy rule and then refines these fuzzy rules by removing a rule with the maximal error among all initial fuzzy rules. Such a refinement procedure provides a better insight into the design of fuzzy models. The coefficients of the local linear function in the then-part of each fuzzy rule are estimated by the Weighted Least Square Estimation(WLS)method. These linear functions can also be substituted for the quadratic functions in order to improve the accuracy of the proposed model. By adding different heavy-tailed noises to the data sets,our experimental results indicate the effectiveness of the proposed model HtRbF in the sense of both promising performance and satisfactory anti-noise effect.

Key words: heavy-tailed noise, Student’s t-distribution, fuzzy rules, Student’s t-distribution C-Means, Student’s t-distribution Context Fuzzy C-Means

中图分类号: 

  • TP181
[1] Mamdani E H,Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies,1975,7(1):1-13.
[2] Takagi T,Sugeno M. Fuzzy identification of systems and its applications to Modeling and control. IEEE Transactions on Systems,Man,and Cybernetics,1985,SMC-15(1):116-132.
[3] Pedrycz W,Reformat M. Rule-based modeling of nonlinear relationships. IEEE Transactions on Fuzzy Systems,1997,5(2):256-269.
[4] Gómez-Skarmeta A F,Delgado M,Vila M A. About the use of fuzzy clustering techniques for fuzzy model identification. Fuzzy Sets and Systems,1999,106(2):179-188.
[5] Weng C H,Chen Y L. Mining fuzzy association rules from uncertain data. Knowledge and Information Systems,2010,23(2):129-152.
[6] Jiang Y Z,Wu D R,Deng Z H,et al. Seizure classification from EEG signals using transfer learning,semi-supervised learning and TSK fuzzy system. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2017,25(12):2270-2284.
[7] Roh S B,Oh S K,Pedrycz W,et al. Development of autofocusing algorithm based on fuzzy transforms. Fuzzy Sets and Systems,2016,288:129-144.
[8] Pei B,Zhao S Y,Chen H,et al. FARP:Mining fuzzy association rules from a probabilistic quantitative database. Information Sciences,2013,237:242-260.
[9] Chen A G,Qian P J,Wang S T,et al. Large-scale fuzzy multiple-medoid clustering method. Journal of Intelligent & Fuzzy Systems,2017,32(3):1833-1845.
[10] 贾海宁,王士同. 面向噪声数据的强化模糊规则模型及实现. 计算机科学与探索,2018,2(11):1815-1826.(Jia H N,Wang S T. Reinforced rule-based fuzzy models for noisy data and its implementation. Journal of Frontiers of Computer Science and Technology,2018,12(11):1815-1826.)
[11] Elkano M,Galar M,Sanz J A,et al. Enhancing multiclass classification in FARC-HD fuzzy classifier:On the synergy between n-dimensional overlap functions and decomposition strategies. IEEE Transactions on Fuzzy Systems,2015,23(5):1562-1580.
[12] Barrenechea E,Bustince H,Fernandez J,et al. Using the Choquet integral in the fuzzy reasoning method of fuzzy rule-based classification systems. Axioms,2013,2(2):208-223.
[13] Garcia-Jimenez S,Bustince H,Hüllermeier E,et al. Overlap indices:Construction and application to interpolative fuzzy systems. IEEE Transactions on Fuzzy Systems,2015,23(4):1259-1273.
[14] Lin D F,Wang J,Zhu J H,et al. A novel Takagi-Sugeno fuzzy system modeling method with joint feature selection and rule reduction ∥ Proceedings of 2018 IEEE International Conference on Fuzzy Systems. Rio de Janeiro,Brazil:IEEE,2018:1-7.
[15] Zhang X T,Pan X G,Wang S T,et al. Fuzzy DBN with rule-based knowledge representation and high interpretability ∥ Proceedings of the 2017 12th International Conference on Intelligent Systems and Knowledge Engineering. Nanjing,China:IEEE,2017:1-7.
[16] Kim E H,Oh S K,Pedrycz W. Reinforced rule-based fuzzy models:Design and analysis. Knowledge-Based Systems,2017,119:44-58.
[17] Mukherjee A,Sengupta A. Estimating the probability density function of a nonstationary non-Gaussian noise. IEEE Transactions on Industrial Electronics,2010,57(4):1429-1435.
[18] Wang Z M,Song Q,Soh Y C,et al. Robust curve clustering based on a multivariate t-distribution model. IEEE Transactions on Neural Networks,2010,21(12):1976-1984.
[19] 王 桥. 数字图像处理. 北京:科学出版社,2009,21-30.
[20] Bezdek J C. Pattern recognition with fuzzy objective function algorithms. Boston:Springer,1981,203-239.
[21] Herrera L J,Pomares H,Rojas I,et al. TaSe,a Taylor series-based fuzzy system model that combines interpretability and accuracy. Fuzzy Sets and Systems,2005,153(3):403-427.
[22] Yen J,Wang L,Gillespie C W. Improving the interpretability of TSK fuzzy models by combining global learning and local learning. IEEE Transactions on Fuzzy Systems,1998,6(4):530-537.
[1] 汪敏,赵飞,闵帆. 储层预测的代价敏感主动学习算法[J]. 南京大学学报(自然科学版), 2020, 56(4): 561-569.
[2] 朱荀,刘国强,丁华平,沈庆宏. 一种通过支持向量机对交通拥堵情况进行分类的方法[J]. 南京大学学报(自然科学版), 2020, 56(2): 278-283.
[3] 王卫星,刘兆伟,石敬华. 基于时间敏感滑动窗口的CP⁃nets结构学习[J]. 南京大学学报(自然科学版), 2020, 56(2): 175-185.
[4] 信统昌,刘兆伟. 基于贝叶斯⁃遗传算法的多值无环CP⁃nets学习[J]. 南京大学学报(自然科学版), 2020, 56(1): 74-84.
[5] 郑文萍,刘韶倩,穆俊芳. 一种基于相对熵的随机游走相似性度量模型[J]. 南京大学学报(自然科学版), 2019, 55(6): 984-999.
[6] 黄华娟,韦修喜. 基于自适应调节极大熵的孪生支持向量回归机[J]. 南京大学学报(自然科学版), 2019, 55(6): 1030-1039.
[7] 刘 素, 刘惊雷. 基于特征选择的CP-nets结构学习[J]. 南京大学学报(自然科学版), 2019, 55(1): 14-28.
[8] 曲昭伟, 杨凯翔, 王晓茹, 李百威. 基于语义行为和社交关联的好友推荐模型[J]. 南京大学学报(自然科学版), 2018, 54(6): 1124-1131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙 玫,张 森,聂培尧,聂秀山. 基于朴素贝叶斯的网络查询日志session划分方法研究[J]. 南京大学学报(自然科学版), 2018, 54(6): 1132 -1140 .
[2] 周星星,张海平,吉根林. 具有时空特性的区域移动模式挖掘算法[J]. 南京大学学报(自然科学版), 2018, 54(6): 1171 -1182 .
[3] 韩明鸣, 郭虎升, 王文剑. 面向非平衡多分类问题的二次合成QSMOTE方法[J]. 南京大学学报(自然科学版), 2019, 55(1): 1 -13 .
[4] 刘 素, 刘惊雷. 基于特征选择的CP-nets结构学习[J]. 南京大学学报(自然科学版), 2019, 55(1): 14 -28 .
[5] 王伯伟, 聂秀山, 马林元, 尹义龙. 基于语义相似度的无监督图像哈希方法[J]. 南京大学学报(自然科学版), 2019, 55(1): 41 -48 .
[6] 孔 颉, 孙权森, 纪则轩, 刘亚洲. 基于仿射不变离散哈希的遥感图像快速目标检测新方法[J]. 南京大学学报(自然科学版), 2019, 55(1): 49 -60 .
[7] 严云洋, 瞿学新, 朱全银, 李 翔, 赵 阳. 基于离群点检测的分类结果置信度的度量方法[J]. 南京大学学报(自然科学版), 2019, 55(1): 102 -109 .
[8] 阚 威, 李 云. 基于LSTM的脑电情绪识别模型[J]. 南京大学学报(自然科学版), 2019, 55(1): 110 -116 .
[9] 肖梦君, 吴俊仙, 张 娜, 陈 昕, 饶泽兵, 陈允梓. VDR基因肠上皮特异性敲除小鼠的构建及其对炎症性肠病的影响[J]. 南京大学学报(自然科学版), 2019, 55(2): 332 -338 .
[10] 董少春,种亚辉,胡 欢,黄璐璐. 基于时序InSAR的常州市2015-2018年地面沉降监测[J]. 南京大学学报(自然科学版), 2019, 55(3): 370 -380 .