南京大学学报(自然科学版) ›› 2019, Vol. 55 ›› Issue (2): 272–281.doi: 10.13232/j.cnki.jnju.2019.02.012

• • 上一篇    下一篇

养殖塘生态系统重金属污染状况与风险评价

李嘉明1,邹 勇2,郑 浩2,魏钟波1,杨柳燕1,缪爱军1*   

  1. 1.污染控制与资源化研究国家重点实验室,南京大学环境学院,南京,210023; 2.江苏省渔业技术推广中心,南京,210036
  • 接受日期:2018-07-01 出版日期:2019-04-01 发布日期:2019-03-31
  • 通讯作者: 缪爱军 E-mail:miaoaj@nju.edu.cn
  • 基金资助:
    江苏省水产三新工程(Y2016-20)

Pollution status and risk assessment of heavy metals in aquaculture ecosystem

Li Jiaming1,Zou Yong2,Zheng Hao2,Wei Zhongbo1,Yang Liuyan1,Miao Aijun1*   

  1. 1.State Key Laboratory of Pollution Control and Resource Reuse,School of Environment,Nanjing University,Nanjing,210023,China; 2.Fisheries Technology Extension Center of Jiangsu Province,Nanjing,210036,China
  • Accepted:2018-07-01 Online:2019-04-01 Published:2019-03-31
  • Contact: Miao Aijun E-mail:miaoaj@nju.edu.cn

摘要: 近年来,人们对水产品的需求日益增高,对养殖水体环境安全问题也越来越关注. 重金属作为一种高持久性的污染物,其在环境中的存在可能给人们带来较高的健康风险. 测定了虾塘生态系统中水体、动植物、底泥的Cr,Cu,As,Cd,Pb含量,研究了五种重金属在底泥中的赋存形态,用潜在生态污染指数法评价了底泥和水体的重金属生态风险. 研究发现养殖水体的重金属生态风险等级为轻微,底泥的重金属生态风险等级为轻微或中等. 比较所研究的几种重金属,水体中Cu的生态风险最高,底泥中Cd的生态风险最高,其他重金属生态风险等级均为轻微. 研究结果表明,虾的As含量较高,而其他金属含量均低于标准值. 虾体内Cr,As,Cd,Pb的富集量由高到低依次为虾壳>肌肉>虾头,Cu主要在虾头中富集. 底泥中Cr,Cu,Cd,Pb主要以络合态和残渣态的形式存在,较难被生物吸收,而30%左右的As以可交换态形式存在,易被生物吸收.

关键词: 重金属, 虾 塘, 底 泥, 生态风险评价, 重金属连续提取

Abstract: In recent years,there has been a steady increase in the demand of aquatic products and more attention has been given to the safety of the water environment. Heavy metal pollution may pose risk to human because of the toxicity and persistence of metals. In order to evaluate the ecological risk of heavy metals in the shrimp ponds,we measured the contents of Cr,Cu,As,Cd,and Pb in water,aquatic plants,shrimps,and sediments. The potential ecological risk of heavy metals in the shrimp ponds was assessed using potential ecological risk factors. And then,we studied the chemical speciation of five metals in sediments using sequential extraction. Our study showed that Cu had the highest ecological risk in water and Cd had the highest ecological risk in sediments while the potential ecological risk of the other heavy metals was low. The level of As in shrimps was higher,while other metals were lower than safety limits. The concentrations of Cr,As,Cd,Pb in different parts of the shrimp decreased following the order of exoskeleton>muscle>head,while Cu were concentrated in shrimp heads. In the sediments,Cr,Cu,Cd,and Pb mainly existed in the form of complexes phase and residuals phase,its bioavailability was low. About 30% of As existed in exchangeable phase and the bioavailability was high.

Key words: heavy metal, shrimp pond, sediments, risk assessment, sequential extraction of heavy metals

中图分类号: 

  • X171
[1] De A L R,Echavarri-Erasun B,Dévier M H,et al. Assessment of the effects of discontinuous sources of contamination through biomarker analyses on caged mussels. Science of the Total Environment,2018,634:116-126.
[2] 周建军,周 桔,冯仁国. 我国土壤重金属污染现状及治理战略. 中国科学院院刊,2014(3):315-320.(Zhou J J,Zhou J,Feng R G. Status of China’s heavy metal contamination in soil and its remediation strategy. Bulletin of Chinese Academy of Sciences,2014(3):315-320.)
[3] 王宏镔,束文圣,蓝崇钰. 重金属污染生态学研究现状与展望. 生态学报,2005,25(3):596-605.(Wang H B,Shu W S,Lan C Y. Ecology for heavy metal pollution:Recent advances and future prospects. Acta Ecologica Sinica,2005,25(3):596-605.)
[4] Zhuang W,Liu Y X,Chen Q,et al. A new index for assessing heavy metal contamination in sediments of the Beijing-Hangzhou Grand Canal(Zaozhuang Segment):A case study. Ecological Indicators,2016,69:252-260.
[5] Rahman M S,Saha N,Molla A H,et al. Assessment of anthropogenic Influence on heavy metals contamination in the aquatic ecosystem components:Water,sediment,and fish. Soil and Sediment Contamination:An International Journal,2014,23(4):353-373.
[6] 李其林,黄 昀,王 萍等. 养殖水体底泥中重金属的特征及安全评价. 环境影响评价,2012,34(3):52-56.(Li Q L,Huang Y,Wang P,et al. Characteristics of heavy metals in aquaculture sediment and associated risk assessments. Envir-onmental Impact Assessment,2012,34(3):52-56.)
[7] Islam M S,Ahmed M K,Raknuzzaman M,et al. Heavy metal pollution in surface water and sediment:A preliminary assessment of an urban river in a developing country. Ecological Indicators,2015,48:282-291.
[8] 谢文平,余德光,郑光明等. 珠江三角洲养殖鱼塘水体中重金属污染特征和评估. 生态环境学报,2014,23(4):636-641.(Xie W P,Yu D G,Zheng G M,et al. Residues and potential ecological risk assessment of metal in water and sediments from freshwater fish pond of Pearl River Delta. Ecology and Environmental Sciences,2014,23(4):636-641.)
[9] 焦宝玉,刘 慧,贾 砾等. 河南中牟县万滩镇养殖池塘底泥重金属污染评价. 淡水渔业,2015,45(2):15-19.(Jiao B Y,Liu H,Jia L,et al. Heavy metal pollution assessment in sediments of aquaculture ponds of the Wantan town in Zhongmu,Henan province. Freshwater Fisheries,2015,45(2):15-19.)
[10] 臧晓梅,缪爱军,郑 浩等. 3种修复剂对底泥中不同形态重金属去除效果评估. 环境工程学报,2017,11(8):4585-4593.(Zang X M,Miao A J,Zheng H,et al. Efficiency of three remediation agents on removal of heavy metals or metalloids from sediments. Chinese Journal of Environ-mental Engineering,2017,11(8):4585-4593.)
[11] 何东明,王晓飞,陈丽君等. 基于地积累指数法和潜在生态风险指数法评价广西某蔗田土壤重金属污染. 农业资源与环境学报,2014,31(2):126-131.(He D M,Wang X F,Chen L J,et al. Assessment on heavy metals contaminations of sugarcane soil in Guangxi province by the geo-accumulation index and potential ecological risk index. Journal of Agricultural Resources and Environment,2014,31(2):126-131.)
[12] 国家环境保护局. 渔业水质标准:GB 11607-1989.(State Environmental Protection Bureau. Water quality standard of fishery:GB 11607-1989.)
  [13] 国家环境保护局. 国家技术监督局中华人民共和国国家标准. 土壤环境质量标准:GB/T 15618-1995.(State Environmental Protection Bureau,State Bureau of Technical Supervision. Environmental quality standard for soils:GB/T 15618-1995.)
  [14] 贾成霞,张清靖,刘 盼等. 北京地区养殖池塘底泥中重金属的分布及污染特征. 水产科学,2011,30(1):17-21.(Jia C X,Zhang Q J,Liu P,et al. Heavy metal distribution and pollution characteristics in sediments of aquaculture ponds in Beijing area. Fisheries Science,2011,30(1):17-21.)
[15] 中国环境监测总站. 中国土壤元素背景值. 北京:中国环境科学出版社,1990,62-67.
[16] 宁建凤,邹献中,杨少海等. 广东大中型水库底泥重金属含量特征及潜在生态风险评价. 生态学报,2009,29(11):6059-6067.(Ning J F,Zou X Z,Yang S H,et al. Heavy metal contents analysis and potential ecological risk appraisal to sediments of large and medium-scaled reservoirs in Guangdong Province. Acta Ecologica Sinica,2009,29(11):6059-6067.)
[17] 王兆群,杨广利,林 芳. 洪泽湖溧河洼水生植物体内重金属调查. 环境监控与预警,2013,5(1):47-49.(Wang Z Q,Yang G L,Lin F. Survey of heavy metals in aquatic plant body of the Lihewa in Hongze Lake. Environmental Monitoring and Forewarning,2013,5(1):47-49.)
[18] 中华人民共和国农业部. 无公害食品 渔用配合饲料安全限量:NY5072-2002.
[19] 中华人民共和国卫生部. 食品安全国家标准 食品中污染物限量:GB 2762-2012.(Ministry of Health,PRC. Maximum levels of contaminants in foods:GB 2762-2012.)
[20] 中华人民共和国农业部. 无公害食品水产品中有毒有害物质限量:NY 5073-2006.
[21] 江晨洁. 克氏原螯虾、日本沼虾对饲料中Cd、Pb富集与释放特性及其安全性分析. 硕士学位论文. 南京:南京师范大学,2015.(Jiang C J. The study of enrichment and release properties and safety analysis of Cd and Pb in feed with Procambarus clarkia and Macrobrachium nipponense. Master Dissertation. Nanjing:Nanjing Normal University,2015.)
[22] 陈建明,杨振宇,姜 健等. 北极甜虾中重金属含量和分布研究. 食品科学,2009,30(14):264-268.(Chen J M,Yang Z Y,Jiang J,et al. Determination and distribution of heavy metals in different parts of Pandalus borealis. Food Science,2009,30(14):264-268.)
[23] 王 军,翟毓秀,宁劲松等. 养殖虾夷扇贝不同组织中重金属含量的分布. 海洋科学,2009,33(8):44-47.(Wang J,Zhai Y X,Ning J S,et al. Heavy metal distribution in different tissues of Patinopecten yesoensis. Marine Sciences,2009,33(8):44-47.)
[24] 孙玲玲,宋金明,于 颖等. 荣成湾14种海洋经济生物体中的重金属水平与食用风险初步评价. 海洋与湖沼,2018,49(1):52-61.(Sun L L,Song J M,Yu Y,et al. Preliminary assessment on heavy metal levels and food risk in 14 economic organisms of the Rongcheng bay. Oceanologia et Limnologia Sinica,2018,49(1):52-61.)
[25] 马鹏程,陈棉彪,黄楚珊等. 粤北星子河水生生物体内重金属污染特征及健康风险. 生态毒理学报,2018,13(1):241-250.(Ma P C,Chen M B,Huang C S,et al. Contamination characteristics and risk assessment of heavy metals in aquatic species from Xingzi river of northern regions,Guangdong province. Asian Journal of Ecotoxicology,2018,13(1):241-250.)
[1]  陆雅婕,吴 笛,尹 颖*,郭红岩.  重金属和溴代阻燃剂复合污染对小白菜的生物效应[J]. 南京大学学报(自然科学版), 2018, 54(1): 196-.
[2]  倪玲玲,王 栋*,王远坤,陶雨薇,王艳磊.  基于贝叶斯方法的太湖沉积物多环芳烃的生态风险评价[J]. 南京大学学报(自然科学版), 2017, 53(5): 871-.
[3]  李亚青1,万晨洁2,魏天娇2,管冬兴2,黄 辉2,余光辉1,罗 军2*. 基于梯度扩散薄膜技术的脱水污泥中重金属有效性的原位分析[J]. 南京大学学报(自然科学版), 2017, 53(2): 227-.
[4] 臧晓梅1,缪爱军1*,郑 浩2,樊祥科2,樊宝洪2,杨柳燕1. 蟹塘底泥中重金属的生态风险评估及其植物修复[J]. 南京大学学报(自然科学版), 2016, 52(6): 1040-.
[5] 谭凌艳,杨柳燕,缪爱军*. 人工纳米颗粒对重金属在水生生物中的富集与毒性研究进展[J]. 南京大学学报(自然科学版), 2016, 52(4): 582-.
[6] 朱洁羽1,王 栋1*,王远坤1,王腊春2,陈 军3,黄 卫4,曾德彪1,5,姜丽丽1,刘登峰1. 太湖流域持久性有机污染物特征分析和生态与健康风险评价[J]. 南京大学学报(自然科学版), 2016, 52(2): 370-.
[7] 陈 莲1,高建华1,2*,冯振兴1,徐夏楠1,朱庆光1,徐 粲1. 重金属在互花米草盐沼湿地中的富集及迁移规律[J]. 南京大学学报(自然科学版), 2014, 50(5): 695-705.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 林 銮,陆武萍,唐朝生,赵红崴,冷 挺,李胜杰. 基于计算机图像处理技术的松散砂性土微观结构定量分析方法[J]. 南京大学学报(自然科学版), 2018, 54(6): 1064 -1074 .
[2] 马宏亮, 万建武, 王洪元. 一种嵌入样本流形结构与标记相关性的多标记降维算法[J]. 南京大学学报(自然科学版), 2019, 55(1): 92 -101 .
[3] 陆慎涛, 葛洪伟, 周 竞. 自动确定聚类中心的移动时间势能聚类算法[J]. 南京大学学报(自然科学版), 2019, 55(1): 143 -153 .
[4] 杨 薇, 王洪元, 张 继, 张中宝. 一种基于Faster-RCNN的车辆实时检测改进算法[J]. 南京大学学报(自然科学版), 2019, 55(2): 231 -237 .
[5] 王鹏,林志斌. 基于响度级、耳间互相关系数和中心频率的主观声场宽度预测模型[J]. 南京大学学报(自然科学版), 2019, 55(5): 804 -812 .
[6] 徐扬,周文瑄,阮慧彬,孙雨,洪宇. 基于层次化表示的隐式篇章关系识别[J]. 南京大学学报(自然科学版), 2019, 55(6): 1000 -1009 .
[7] 柴变芳,魏春丽,曹欣雨,王建岭. 面向网络结构发现的批量主动学习算法[J]. 南京大学学报(自然科学版), 2019, 55(6): 1020 -1029 .
[8] 李勤,陆现彩,张立虎,程永贤,刘鑫. 蒙脱石层间阳离子交换的分子模拟[J]. 南京大学学报(自然科学版), 2019, 55(6): 879 -887 .
[9] 段友祥,柳璠,孙歧峰,李洪强. 基于相带划分的孔隙度预测[J]. 南京大学学报(自然科学版), 2019, 55(6): 934 -941 .
[10] 俞冬明, 李苑, 李智星, 王国胤. 一种基于用户结构和属性的无监督用户对齐方法[J]. 南京大学学报(自然科学版), 2020, 56(1): 1 -8 .