南京大学学报(自然科学版) ›› 2019, Vol. 55 ›› Issue (2): 282–290.doi: 10.13232/j.cnki.jnju.2019.02.013

• • 上一篇    下一篇

柳树对镉-芘复合污染土壤的修复潜力与耐受性研究

谢探春,王国兵,尹 颖*,郭红岩   

  1. 污染控制与资源化研究国家重点实验室,南京大学环境学院,南京,210023
  • 接受日期:2018-11-10 出版日期:2019-04-01 发布日期:2019-03-31
  • 通讯作者: 尹 颖 E-mail:yinying@nju.edu.cn
  • 基金资助:
    江苏省2017年环保科研计划(2017001-1)

Interaction effects on uptake and toxicity of cadmium and pyrene in willows from co-contaminated soil

Xie Tanchun,Wang Guobing,Yin Ying*,Guo Hongyan   

  1. State Key Laboratory of Pollution Control and Resources Reuse,School of Environment,Nanjing University,Nanjing,210023,China
  • Accepted:2018-11-10 Online:2019-04-01 Published:2019-03-31
  • Contact: Yin Ying E-mail:yinying@nju.edu.cn

摘要: 柳树应用于土壤修复,不仅展现对镉良好的富集性,对污染环境良好的适应性,还能发挥景观植物的特性,避免将污染引入食物链. 研究通过90 d温室盆栽实验探讨了三种能够有效富集重金属的柳树(Salix×aureo-pendula CL‘J1011’,Salix×Jiangsuensis ‘J172’,Salix×Jiangsuensis ‘55’)对于镉-芘复合污染土壤的修复潜力. 结果表明:三种柳树均表现出良好的耐受性且同时具有富集镉和降解芘的性能;其中金丝垂柳1011对镉的富集达到231.4 μg·kg-1,同时使芘的残留量减少了88.6%. 与单一镉/芘污染相比,复合污染抑制了苏柳172和苏柳55叶片中镉的富集,富集系数分别降低了54.4%和44.1%,同时抑制了柳树对土壤中芘的去除效果,去除率分别降低了3.4%和27.0%;复合污染情况下金丝垂柳1011对镉的吸收不受影响,但对芘的去除具有更好的效果,去除率提高6.5%,体现其在重金属-有机物复合污染修复方面更高的应用潜力.

关键词: 植物修复, 柳 树, 土 壤, 镉,

Abstract: Willows subjected to phytoremediation not only beautify our environment through their ormamental characteristics,but also avoid introducing contaminants into the food chain on basis of their good endurance and absorption capacity for cadmium. A pot experiment was carried out in greenhouse conditions to examine the remediation efficiency of three willows(Salix×aureo-pendula CL‘J1011’,Salix×Jiangsuensis ‘J172’,Salix×Jiangsuensis ‘55’)on soil contaminated by cadmium(Cd)and pyrene(PYR). Results showed that willows showed great endurance to Cd-PYR co-polluted soil,and simultaneous high ability in accumulation and transport of Cd. Among the willows,Salix×aureo-pendula CL‘J1011’ showed remarkable accumulation of cadmium and a significant degradation rate for PYR in co-polluted soil(by 231.4 μg·kg-1 and 88.6%,respectively). Compared with single contamination of Cd or PYR,co-contamination significantly decreased the bioconcentration factor(BCF)of Cd in leaves of Salix×Jiangsuensis ‘J172’and Salix×Jiangsuensis ‘55’(by 54.4% and 44.1%,respectively),and also decreased their removal rates of pyrene(by 3.4% and 27.0%,respectively). Conversely,uptake of Cd by Salix×aureo-pendula CL‘J1011’ showed no significant difference when compared multiple pollution with single pollution,but they had a higher removal rates of PYR(by 6.5%). In conclusion,Salix×aureo-pendula CL‘J1011’ might be more effective in plant phytoremediation of Cd-PYR co-polluted soil.

Key words: phytoremediation, willow, soil, cadmium, pyrene

中图分类号: 

  • X53
[1] Khan S,Aijun L,Zhang S Z,et al. Accumulation of polycyclic aromatic hydrocarbons and heavy metals in lettuce grown in the soils contaminated with long-term wastewater irrigation. Journal of Hazardous Materials,2008,152(2):506-515.
[2] Li T Q,Di Z Z,Islam E,et al. Rhizosphere characteristics of zinc hyperaccumulator Sedum alfredii involved in zinc accumulation. Journal of Hazardous Materials,2010,185(2-3):818-823.
[3] Tripathi V,Fraceto L F,Abhilash P C. Sustainable clean-up technologies for soils contaminated with multiple pollutants:Plant-microbe-pollutant and climate nexus. Ecological Engineering,2015,82:330-335.
[4] Sun Y B,Zhou Q X,Wang L,et al. Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. Journal of Hazardous Materials,2009,161(2-3):808-814.
[5] 曲 健,宋云横,苏 娜. 沈抚灌区上游土壤中多环芳烃的含量分析. 中国环境监测,2006,22(3):29-31.(Qu J,Song Y H,Su N. Analysis of polycyclic aromatic hydrocarbons in upriver soil of Shen-Fu irrigation area. Environmental Monitoring in China,2006,22(3):29-31.)
[6] Yang C J,Zhou Q X,Wei S H,et al. Chemical-assisted phytoremediation of CD-PAHs contaminated soils using Solanum nigrum L. International Journal of Phytoremediation,2011,13(8):818-833.
[7] Gerhardt K E,Huang X D,Glick B R,et al. Phytoremediation and rhizoremediation of organic soil contaminants:Potential and challenges. Plant Science,2009,176(1):20-30.
[8] 韦朝阳,陈同斌. 重金属污染植物修复技术的研究与应用现状. 地球科学进展,2002,17(6):833-839.(Wei C Y,Chen T B. An pverview on the status of research and application of heavy metal phytoremediation. Advance in Earth Sciences,2002,17(6):833-839.)
[9] Dickinson N M,Pulford I D. Cadmium phytoextraction using short-rotation coppice Salix:the evidence trail. Environment International,2005,31(4):609-613.
[10] Robinson B H,Mills T M,Petit D,et al. Natural and induced cadmium-accumulation in poplar and willow:Implications for phytoremediation. Plant and Soil,2000,227(1-2):301-306.
[11] Klang-Westin E,Eriksson J. Potential of Salix,as phytoextractor for Cd on moderately contaminated soils. Plant and Soil,2003,249(1):127-137. [12] Yergeau E,Sanschagrin S,Maynard C,et al. Microbial expression profiles in the rhizosphere of willows depend on soil contamination. The ISME Journal,2014,8(2):344-358.
[13] Liste H H,Felgentreu D. Crop growth,culturable bacteria,and degradation of petrol hydrocarbons(PHCs)in a long-term contaminated field soil. Applied Soil Ecology,2006,31(1-2):43-52.
[14] Liu W T,Ni J C,Zhou Q X. Uptake of heavy metals by trees:Prospects for phytoremediation. Materials Science Forum,2013,743-744:768-781.
[15] Lee S H,LeeW S,Lee C H,et al. Degradation of phenanthrene and pyrene in rhizosphereofgrasses and legumes. Journal of Hazardous Materials,2008,153(1-2):892-898.
[16] Li Y W,Cai Q Y,Mo C H,et al. Plant uptake and enhanced dissipation of di(2-ethylhexyl)phthalate(DEHP)in spiked soils by different plant species. International Journal of Phytoremediation,2014,16(6):609-620.
[17] 袁 馨,魏世强,潘声旺. 苏丹草对土壤中菲芘的修复作用. 农业环境科学学报,2009,28(7):1410-1415.(Yuan X,Wei S Q,Pan S W. The remediation of phenanthrene and pyrene in soil by sudan grass (Sorghum vulgare L.). Journal of Agro-Envirnment Science,2009,28(7):1410-1415.)
  [18] Sun L,Yan X L,Liao X Y,et al. Interactions of arsenic and phenanthrene on their uptake and antioxidative response in Pteris vittata L. Environmental Pollution,2011,159(12):3398-3405.
[19] He S Y,Yang X E,He Z L,et al. Morphological and physiological responses of plants to cadmium toxicity:A review. Pedosphere,2017,27(3):421-438.
[20] Zhang Z H,Rengel Z,Meney K,et al. Polynuclear aromatic hydrocarbons(PAHs)mediate cadmium toxicity to an emergent wetland species. Journal of Hazardous Materials,2011,189(1-2):119-126.
[21] Wang W Y,Zhang X F,Huang J,et al. Interactive effects of cadmium and pyrene on contaminant removal from co-contaminated sediment planted with mangrove Kandelia obovata(S. L.) yong seedlings. Marine Pollution Bulletin,2014,84(1-2):306-313.
[22] Zhang H,Dang Z,Zheng L C,et al. Remediation of soil co-contaminated with pyrene and cadmium by growing maize(Zea mays L.). International Journal of Environmental Science & Technology,2009,6(2):249-258.
[23] Jeelani N,Yang W,Xu L Q,et al. Phytoremediation potential of Acorus calamus in soils co-contaminated with cadmium and polycyclic aromatic hydrocarbons. Scientific Reports,2017,7(1):8028.
[24] Lin Q,Shen K L,Zhao H M,et al. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants. Journal of Hazardous Materials,2008,150(3):515-521.
[25] Lu M,Zhang Z Z,Wang J X,et al. Interaction of heavy metals and pyrene on their fates in soil and tall fescue (Festuca arundinacea). Environmental Science & Technology,2014,48(2):1158-1165.
[26] Wang P,Luo L J,Ke L,et al. Combined toxicity of polycyclic aromatic hydrocarbons and heavy metals to biochemical and antioxidant responses of free and immobilized Selenastrum capricornutum. Environmental Toxicology and Chemistry,2013,32(3):673-683.
[27] 原海燕,黄 钢,佟海英等. Cd胁迫下马蔺根和叶中非蛋白巯基肽含量的变化. 生态环境学报,2013,22(7):1214-1219.(Yuan H Y,Huang G,Tong H Y,et al. The change of non-protein thiol content in roots and leaves of Iris lactea var. chinensis under Cd stress. Ecology and Environmental Sciences,2013,22(7):1214-1219.)
[28] 张春燕,王瑞刚,范稚莲等. 杨树和柳树富集Cd、Zn、Pb的品种差异性[J]. 农业环境科学学报,2013,32(3):530-538.(Zhang C Y,Wang R G,Fan Z L,et al. Difference in cadmium,zinc and lead accumulation of poplar and willow species. Journal of Agro-Environment Science,2013,32(3):530-538.)
[29] 陈小米,胡国涛,杨 兴等. 速生树种竹柳对复合污染土壤中镉和锌的吸收、积累与生理响应特性. 环境科学学报,2017,37(10):3968-3976.(Chen X M,Hu G T,Yang X,et al. Heavy metal accumulation and physiological response of bamboo-willow plants to soil co-contaminated with Cd and Zn. Acta Scientiae Circumstantiae,2017,37(10):3968-3976.)
[30] Grenier V,Pitre F E,Nissim W G,et al. Genotypic differences explain most of the response of willow cultivars to petroleum-contaminated soil. Trees,2015,29(3):871-881.
[31] Lux A,Martinka M,Vaculik M,et al. Root responses to cadmium in the rhizosphere:a review. Journal of Experimental Botany,2011,62(1):21-37.
[32] Chirakkara R A,Cameselle C,Reddy K R. Assessing the applicability of phytoremediation of soils with mixed organic and heavy metal contaminants. Reviews in Environmental Science and Bio/technology,2016,15(2):299-326.
[33] Teng Y,Shen Y Y,Luo Y M,et al. Influence of Rhizobium meliloti on phytoremediation of polycyclic aromatic hydrocarbons by alfalfa in an aged contaminated soil. Journal of Hazardous Materials,2011,186(2-3):1271-1276.
[34] Qian J,Ding Q F,Guo A N,et al. Alteration in successional trajectories of bacterioplankton communities in response to co-exposure of cadmium and phenanthrene in coastal water microcosms. Environmental Pollution,2017,221:480-490.
[35] Sandrin T R,Maier R M. Impact of metals on the biodegradation of organic pollutants. Environmental Health Perspectives,2003,111(8):1093-1101.
[1] 郭超, 文宇博, 杨忠芳, 李伟, 管冬兴, 季峻峰. 典型岩溶地质高背景土壤镉生物有效性及其控制因素研究[J]. 南京大学学报(自然科学版), 2019, 55(4): 678-687.
[2]  张慧玲1,2,党 菲3,李紫竹4,钟 寰1*,王永杰5*.  土壤-植物系统“硒-汞拮抗”研究进展综述[J]. 南京大学学报(自然科学版), 2017, 53(5): 903-.
[3] 姜 洋1,罗远恒1,2,顾雪元1*. 农田土壤镉污染的原位钝化修复及持久性研究[J]. 南京大学学报(自然科学版), 2017, 53(2): 265-.
[4] 臧晓梅1,缪爱军1*,郑 浩2,樊祥科2,樊宝洪2,杨柳燕1. 蟹塘底泥中重金属的生态风险评估及其植物修复[J]. 南京大学学报(自然科学版), 2016, 52(6): 1040-.
[5] 张弛;袁亚光;钦佩;赵福庚;. 香蒲对重金属镉的耐性及吸收途径研究[J]. 南京大学学报(自然科学版), 2013, 49(4): 506-511.
[6]  蒋丽娟1,尹颖1**,尹大强2,郭红岩1,杨柳燕1,王晓蓉1
.  腐植酸对芘的生物毒性效应的影响*[J]. 南京大学学报(自然科学版), 2012, 48(6): 774-779.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘瑞红,王晖,陶农建. 电位调制下单纳米颗粒的等离激元成像研究[J]. 南京大学学报(自然科学版), 2019, 55(5): 813 -818 .
[2] 刘作国,陈笑蓉. 汉语句法分析中的论元关系模型研究[J]. 南京大学学报(自然科学版), 2019, 55(6): 1010 -1019 .
[3] 王冬丽,申俊峰,邱海成,杜佰松,李建平,聂潇,王业晗. 辽宁五龙金矿黄铁矿标型特征研究及深部找矿预测[J]. 南京大学学报(自然科学版), 2019, 55(6): 898 -915 .
[4] 郑文萍,刘韶倩,穆俊芳. 一种基于相对熵的随机游走相似性度量模型[J]. 南京大学学报(自然科学版), 2019, 55(6): 984 -999 .
[5] 崔紫薇,王成,陈德蕾,雷蕾. 基于历史出行记录扩充的公交乘客下车站点推算方法[J]. 南京大学学报(自然科学版), 2020, 56(2): 227 -235 .
[6] 秦洋,姚素平,萧汉敏. 致密砂岩储层孔⁃喉连通性研究[J]. 南京大学学报(自然科学版), 2020, 56(3): 338 -353 .
[7] 王丽娟,丁世飞,丁玲. 基于迁移学习的软子空间聚类算法[J]. 南京大学学报(自然科学版), 2020, 56(4): 515 -523 .