南京大学学报(自然科学版) ›› 2019, Vol. 55 ›› Issue (4): 678–687.doi: 10.13232/j.cnki.jnju.2019.04.018

• • 上一篇    下一篇

典型岩溶地质高背景土壤镉生物有效性及其控制因素研究

郭超1(),文宇博1,杨忠芳2,李伟1,管冬兴1,季峻峰1   

  1. 1. 表生地球化学教育部重点实验室,南京大学地球科学与工程学院,南京,210023
    2. 中国地质大学地球科学与资源学院,北京,100083
  • 收稿日期:2019-06-13 出版日期:2019-07-30 发布日期:2019-07-23
  • 通讯作者: 郭超 E-mail:g_chaos@163.com
  • 基金资助:
    国家重点研发计划(2017YFD0800303);西南典型岩溶地区多目标地球化学调查(12120114092001)

Factors controlling the bioavailability of soil cadmium in typical karst areas with high geogenic background

Chao Guo1(),Yubo Wen1,Zhongfang Yang2,Wei Li1,Dongxing Guan1,Junfeng Ji1   

  1. 1. Key laboratory of Surficial Geochemistry Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
    2. School of Earth Sciences and Resources,China University of Geosciences, Beijing, 100083, China
  • Received:2019-06-13 Online:2019-07-30 Published:2019-07-23
  • Contact: Chao Guo E-mail:g_chaos@163.com

摘要:

我国岩溶地貌主要分布在广西、贵州、云南等西南地区,全国土壤污染状况调查公报显示这些岩溶区土壤中金属元素通常超标严重,其生物有效性的相关研究仍较缺乏.采集广西典型岩溶重金属地质高背景地区的稻田土壤,分析金属元素As,Cd,Cr,Cu,Ni,Pb和Zn总量,并采用CaCl2和EDTA(Ethylene Diamine Tetraacetic Acid)提取方法分析土壤中金属的生物有效态含量.结果表明,与上部地壳相比,研究区土壤中不同重金属的富集程度顺序为Cd>As>Pb>Zn>Cr>Cu>Ni,与广西灰岩中这些重金属的富集程度顺序基本一致,揭示岩溶区地质高背景土壤重金属的富集具有显著的母岩继承性.土壤Cd的CaCl2提取的平均含量为0.02 mg·kg-1,平均提取率为4.37%,远低于人为污染区土壤Cd的CaCl2提取的平均含量和提取率.EDTA提取态Cd的含量平均值为0.84 mg·kg-1,平均提取率为52.86%.岩溶区土壤Cd的CaCl2提取态含量与土壤Cd总量没有明显的线性关系,生物有效性和生态风险主要受pH控制:当土壤pH>6.5时,虽然土壤Cd总量较高,但CaCl2提取态Cd含量偏低,生态风险低;而当土壤pH<6.5,土壤Cd总量相对偏低时,CaCl2提取态Cd含量较高,生态风险较高.

关键词: 地质高背景, 岩溶区土壤, 镉, CaCl2提取, 生物有效性

Abstract:

China's karst landforms are mainly distributed in Guangxi,Guizhou,Yunnan provinces and other southwest regions. According to the national soil pollution survey bulletin,the concentrations of metal elements in soils of these karst areas usually exceed the national standard,and the relevant research on the metal bioavailability is still lacking. The total concentrations of metals (As,Cd,Cr,Cu,Ni,Pb and Zn) in the paddy soils from typical karst areas in Guangxi were analyzed,and the chemical bioavailable concentrations of these metals in the soils were analyzed by using the chemical extraction methods of CaCl2 and EDTA(Ethylene Diamine Tetraacetic Acid). The Results showed that compared with that in the upper crust,different degree of enrichment of heavy metals in soils from the study area in order for the Cd>As>Pb>Zn>Cr>Cu>Ni,which is basically consistent with the order of concentrations of these heavy metals in Guangxi limestones,it is revealed that heavy metals in the soils from geogenic background karst area has significant inheritance from the parent rock. The average concentration of CaCl2 extracted from soil Cd in the karst areas was 0.02 mg·kg-1,and the average extraction rate was 4.37%,far lower than the average concentration and the average extraction rate for soil Cd in anthropogenic contaminated areas.The average concentration of EDTA extracted Cd was 0.84 mg·kg-1,and the extraction rate was 52.86%. The study found that there was no significant linear relationship between the concentration of CaCl2 extracted Cd and the total concentration of soil Cd in karst areas. The bioavailability and ecological risk were mainly controlled by pH. When the soil pH was higher than 6.5,although the total concentration of soil Cd was high,the concentration of CaCl2 extracted Cd and the ecological risk were low. However,when the soil pH was lower than 6.5 and the total concentration of soil Cd was relatively low,the concentration of CaCl2 extracted Cd and the ecological risk were higher.

Key words: high geogenic background, karst soil, cadmium, CaCl2 extraction, bioavailability

中图分类号: 

  • X53

图1

研究区采样点位分布图[13—14]"

表1

研究区土壤基本理化性质(n=53)"

项目最小值最大值平均值标准差变异系数全国土壤背景值[16]地壳丰度[17]富集系数
SiO2 (%)27.1286.1666.6113.30.266.62
TiO2 (%)0.10.960.40.170.420.510.640.8
Al2O3 (%)5.4322.2812.623.120.2512.515.41.01
TFe2O3 (%)1.2912.645.092.040.44.25.6*1.21
MgO (%)0.271.210.560.190.351.32.480.43
CaO (%)0.2923.53.195.981.872.163.591.48
Na2O (%)0.070.530.170.10.621.373.270.12
K2O (%)0.142.271.130.60.532.232.80.5
As (mg·kg-1)2.5556.1514.279.980.711.24.81.27
Cd (mg·kg-1)0.177.691.782.031.140.0970.0918.36
Cr (mg·kg-1)50.21442.7160.39198.111.2461922.63
Cu (mg·kg-1)1559.133.829.650.2922.6281.5
Hg (mg·kg-1)0.0622.50.623.044.90.0650.059.52
Mn (mg·kg-1)71.6966.5292.43218.970.75583774.60.5
Ni (mg·kg-1)15.56430.311.980.426.9471.13
Pb (mg·kg-1)19.674.332.0511.840.3726171.23
Se (mg·kg-1)0.221.530.610.280.470.290.092.09
Zn (mg·kg-1)58.4250.8112.5149.660.4474.2671.52
有机质 (%)2.546.954.711.030.223.1
pH5.28.026.660.960.146.7
CEC (cmol(+)/kg)5.4716.4811.042.560.23
CaCl2?Cd (mg·kg-1)00.380.040.061.63
EDTA?Cd (mg·kg-1)0.083.210.840.810.95

图2

广西碳酸盐岩[19]及研究区土壤重金属相比上部地壳的富集系数"

图3

广西碳酸盐岩[19]及研究区土壤重金属的富集系数相关关系图"

表2

土壤重金属生物有效性与土壤性质和元素含量的相关系数"

Soil?CdCaCl2?CdCaCl2提取率EDTA?CdEDTA提取率
Na2O-0.373**0.1850.368**-0.381**0.115
MgO0.116-0.316-0.3250.066-0.187
Al2O3-0.043-0.065-0.018-0.080-0.091
SiO2-0.711**0.2640.364**-0.593**0.568**
K2O-0.599**0.1670.344-0.587**0.398**
CaO0.833**-0.242-0.360**0.722**-0.555**
TFe2O30.246-0.237-0.3000.177-0.389**
Mn0.175-0.258-0.425**0.241-0.034
Cd1.000-0.149-0.393**0.962**-0.476**
Corg0.327-0.070-0.2230.3200.041
pH0.567**-0.581**-0.855**0.568**-0.274
CEC-0.094-0.109-0.117-0.0520.227

图4

研究区土壤Cd总量与提取态Cd含量相关图"

图5

人为污染区土壤Cd总量与提取态Cd含量相关图[22—23,27]"

图6

研究区土壤pH,Cd总量及CaCl2提取态Cd含量相关关系图"

图7

土壤pH与Cd氯化钙提取率间的相关图"

1 袁道光,蔡桂鸿. 岩溶环境学. 重庆:重庆出版社,1988:1-100.
Yuan D G,Cai G H.The science of karst environment. Chongqing:Chongqing Publishing House,1988,1-100.
2 涂成龙,张玉彪,刘丛强等. 典型岩溶区域主要土壤类型分布特征与表层土壤保有量估算. 生态学杂志,2012,31(3):620-625.
Tu C L,Zhang Y B,Liu C Q,et al.Distribution characteristics and surface soil–retaining amount of main soil types in typical Karst region. Chinese Journal of Ecology,2012,31(3):620-625.
3 朱德浩. 广西通志·岩溶志. 南宁:广西人民出版社,2000,1-14.
4 王世杰,季宏兵,欧阳自远等. 碳酸盐岩风化成土作用的初步研究. 中国科学 (D辑),1999,29(5):441-449.
Wang S J,Ji H B,Ouyang Z Y,et al.Preliminary study on weathering and pedogenesis of carbonate rock. Science in China Series D:Earth Sciences,1999,42(6):572-581.
5 BaizeD,SterckemanT. Of the necessity of knowledge of the natural pedo–geochemical background content in the evaluation of the contamination of soils by trace elements. Science of the Total Environment,2001,264(1-2):127-139.
6 JacquatO,VoegelinA,JuillotF,et al. Changes in Zn speciation during soil formation from Zn?rich limestones. Geochimica et Cosmochimica Acta,2009,73(19):5554-5571.
7 Quezada–HinojosaR P,F?llmiK B,VerrecchiaE,et al. Speciation and multivariable analyses of geogenic cadmium in soils at Le Gurnigel,Swiss Jura Mountains. CATENA,2015,125:10-32.
8 朱其清,尹楚良,唐丽华等. 石灰岩土中微量元素的含量与分布. 土壤学报,1984,21(1):58-69.
Zhu Q Q,Yin C L,Tang L H,et al.Content and distribution of trace elements in limestone soils of China. Acta Pedologica Sinica,1984,21(1):58-69.
9 中国地质调查局. 中国耕地地球化学调查报告. (2015?06?25)..
10 Kabata–PendiasA. Soil–plant transfer of trace elements?an environmental issue. Geoderma,2004,122(2-4):143-149.
11 WearJ I,EvansC E. Relationship of zinc uptake by corn and sorghum to soil zinc measured by three extractants. Soil Science Society of America Journal,1968,32(4):543-546.
12 NovozamskyI,LexmondT M,HoubaV J G. A single extraction procedure of soil for evaluation of uptake of some heavy metals by plants. International Journal of Environmental Analytical Chemistry,1993,51(1-4):47-58.
13 谢学锦,任天祥,孙焕振. 中国地球化学图集. 北京:地质出版社,2012,1-135.
Xie X J,Ren T X,Sun H Z.Atlas of Chinese geochemistry. Beijing:Geological Press,2012,1-135.
14 广西地质调查院. 广西壮族自治区地层岩性分布图,2013.
15 中华人民共和国国土资源部. 土地质量地球化学评价规范. DZ/T 0295?2016.
Ministry of Land and Resources of the People's Republic of China. Determination of land Quality Geochemical Evaluation:DZ/T 0295–2016.
16 中国环境监测总站. 中国土壤元素背景值. 北京:中国环境科学出版社,1990.
China National Environmental Monitoring Centre.Background values of soil elements in China.Beijing:China Environmental Science Press,1990.
17 RudnickR L,GaoS. 4.1–Composition of the continental crust. In:Holland H D,Turekian K K. Treatise on Geochemistry. 2nd ed. Oxford:Elsevier,2014:1-51.
18 生态环境部,国家市场监督管理总局. 土壤环境质量 农用地土壤污染风险管控标准(试行). GB 15618-2018.
Ministry of Ecological Environment,State Administration of Market Supervision and Administration. Soil environmental quality Risk control standard for soil contamination of agricultural land. GB 15618-2018.
19 郑国东. 广西北部湾地区表层土壤重金属分布特征及其影响因素研究. 硕士学位论文. 北京:中国地质大学(北京),2016.
Zheng G D.Factors influencing the distribution and accumulation of heavy metals in topsoil across Beibu Gulf of Guangxi. Master Dissertation. Beijing:China University of Geosciences (Beijing),2016.
20 Quezada–HinojosaR P,MateraV,AdatteT,et al. Cadmium distribution in soils covering Jurassic oolitic limestone with high Cd contents in the Swiss Jura. Geoderma,2009,150(3-4):287-301.
21 BiasioliM,FabiettiG,BarberisR,et al. An appraisal of soil diffuse contamination in an industrial district in northern Italy. Chemosphere,2012,88(10):1241-1249.
22 陈俊,范文宏,孙如梦等. 新河污灌区土壤中重金属的形态分布和生物有效性研究. 环境科学学报,2007,27(5):831-837.
Chen J,Fan W H,Sun R M,et al.Bioavailability and species distribution of heavy metals in sewage?rrigated soil from Xinhe. Acta Scientiae Circumstantiae,2007,27(5):831-837.
23 LiT Y,YuanX Y,SongY X,et al. Influence of heavy metals and nutrient concentrations on selenium geochemical behavior in soil?rice system. Polish Journal of Environmental Studies,2016,25(1):185-193.
24 王志楼. 典型矿区重金属污染特性及其土壤酶活性研究. 硕士学位论文. 上海:东华大学,2010.
Wang Z L.Characteristics of heavy metal pollution and soil enzyme activity in typical mining areas. Master Dissertation. Shanghai:Donghua University,2010.
25 Kabata?PendiasA. Behavioural properties of trace metals in soils. Applied Geochemistry,1993,8(S2):3-9.
26 KumpieneJ,GiagnoniL,MarschnerB,et al. Assessment of methods for determining bioavailability of trace elements in soils:A review. Pedosphere,2017,27(3):389-406.
27 许超,夏北成,秦建桥等. 广东大宝山矿山下游地区稻田土壤的重金属污染状况的分析与评价. 农业环境科学学报,2007,26(S1):549-553.
XuC,XiaB C,QinJ Q,et al. Analysis and evaluation on heavy metal contamination in paddy soils in the lower stream of Dabaoshan Area,Guangdong Province. Journal of Agro?Environment Science,2007,26(S1):549-553.
28 GuoG L,ZhouQ X,KovalP V,et al. Speciation distribution of Cd,Pb,Cu,and Zn in contaminated Phaeozem in north?east China using single and sequential extraction procedures. Australian Journal of Soil Research,2006,44(2):135-142.
29 GuptaA K,SinhaS. Assessment of single extraction methods for the prediction of bioavailability of metals to Brassica juncea L. Czern. (var. Vaibhav) grown on tannery waste contaminated soil. Journal of Hazardous Materials,2007,149(1):144-150.
30 中华人民共和国卫生部. 食品安全国家标准 食品中污染物限量. GB 2762-2012.
Ministry of Health of the People's Republic of China. National food safety standard?food pollutant limit. GB2762-2012.
31 ZhangM K,LiuZ Y,WangH. Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Communications in Soil Science and Plant Analysis,2010,41(7):820-831.
32 LoganathanP,VigneswaranS,KandasamyJ,et al. Cadmium sorption and desorption in soils:A review. Critical Reviews in Environmental Science and Technology,2012,42(5):489-533.
33 WangB L,XieZ M,ChenJ J,et al. Effects of field application of phosphate fertilizers on the availability and uptake of lead,zinc and cadmium by cabbage (Brassica chinensis L.) in a mining tailing contaminated soil. Journal of Environmental Sciences,2008,20(9):1109-1117.
34 ShahidM,DumatC,KhalidS,et al. Cadmium bioavailability,uptake,toxicity and detoxification in soil?plant system. Reviews of Environmental Contamination and Toxicology,2017,241:73-137.
35 McBrideM B. Cadmium uptake by crops estimated from soil total Cd and pH. Soil Science,2002,167(1):62-67.
36 SparkK M,WellsJ D,JohnsonB B. Characterizing trace metal adsorption on kaolinite. European Journal of Soil Science,1995,46(4):633-640.
37 VasconcelosI F,HaackE A,MauriceP A,et al. EXAFS analysis of cadmium(II) adsorption to kaolinite. Chemical Geology,2008,249(3?4):237-249.
38 WangC,LiW,YangZ F,et al. An invisible soil acidification:Critical role of soil carbonate and its impact on heavy metal bioavailability. Scientific Reports,2015,5:12735.
[1] 谢探春, 王国兵, 尹 颖, 郭红岩. 柳树对镉-芘复合污染土壤的修复潜力与耐受性研究[J]. 南京大学学报(自然科学版), 2019, 55(2): 282-290.
[2] 姜 洋1,罗远恒1,2,顾雪元1*. 农田土壤镉污染的原位钝化修复及持久性研究[J]. 南京大学学报(自然科学版), 2017, 53(2): 265-.
[3] 张弛;袁亚光;钦佩;赵福庚;. 香蒲对重金属镉的耐性及吸收途径研究[J]. 南京大学学报(自然科学版), 2013, 49(4): 506-511.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄华娟,韦修喜. 基于自适应调节极大熵的孪生支持向量回归机[J]. 南京大学学报(自然科学版), 2019, 55(6): 1030 -1039 .
[2] 张弘,申俊峰,董国臣,刘圣强,王冬丽,王伟清. 云南来利山锡矿锡石标型特征及其找矿意义[J]. 南京大学学报(自然科学版), 2019, 55(6): 888 -897 .
[3] 王大洋. 渤南洼陷沙三下亚段烃源岩地球化学特征及差异性研究[J]. 南京大学学报(自然科学版), 2019, 55(6): 924 -933 .
[4] 郑文萍,刘韶倩,穆俊芳. 一种基于相对熵的随机游走相似性度量模型[J]. 南京大学学报(自然科学版), 2019, 55(6): 984 -999 .
[5] 王浩哲,刘虎,韦志伟,邓倩,李诗达,张海祖,程斌,廖泽文. 塔里木盆地东部上寒武统SPICE事件检出及其油气地球化学意义[J]. 南京大学学报(自然科学版), 2020, 56(3): 354 -365 .
[6] 戴海亮,沈斌,李开开,张小涛,徐学敏,许智超,周晶晶. 地质条件约束下川北二叠系大隆组富有机质页岩热模拟生烃过程及特征研究[J]. 南京大学学报(自然科学版), 2020, 56(3): 382 -392 .
[7] 李同军,于洋,吴伟志,顾沈明. 经典粗糙近似的一个公理化刻画[J]. 南京大学学报(自然科学版), 2020, 56(4): 445 -451 .