梁新彦1,2,钱宇华1,2*,郭 倩2,成红红1,2
南京大学学报(自然科学版). 2016, 52(2): 270.
多标记学习研究的是一个对象同时具有多个标记的一类复杂问题.文本标注、视频内容标注、图像识别和蛋白质功能的发现等都属于这类任务.与单标记学习问题一样,多标记学习也遭遇到了数据维数大的挑战.针对多标记数据,目前已经设计出一些约简算法,但与单标记约简算法相比,方法数量有限且局限性大.随着大数据时代的到来,收集大量样本越来越容易,但标注收集到的全部样本不切实际.这给想要通过利用粗糙集模型来解决多标记学习问题的研究人员带来了三个挑战:数据维数更高、现有粗糙集的局限性和部分标记决策表的出现.为了解决这三个挑战,提出了面向多标记学习的局部粗糙集模型,并获得了一些有意思的性质.最后,通过利用局部粗糙集模型,设计了一个多标记的启发式约简算法,并在三个公开的多标记数据集上验证了算法的有效性.