南京大学学报(自然科学版) ›› 2016, Vol. 52 ›› Issue (2): 229–.

• • 上一篇    下一篇

热致相法制备聚丙烯-聚乳酸共混中空纤维膜及其性能测试

徐志红1,2,黄 鑫3,王伟平3,郭 强2,李 磊3*,张志炳3   

  • 出版日期:2016-03-25 发布日期:2016-03-25
  • 作者简介:(1. 南京大学环境学院,南京,210093;2. 江苏华益科技有限公司,常熟,215522; 3. 南京大学化学化工学院,南京,210093)
  • 基金资助:
    基金项目:江苏省自然科学基金面上项目(BK2012727)
    收稿日期:2015-06-01
    *通讯联系人,E-mail:lilei@nju.edu.cn,ll-nju@163.com

Polypropylene-poly (lactic acid) hollow fiber membrane by thermally induced phase separation

Xu Zhihong1,2, Huang Xin3, Wang Weiping3, Guo Qiang2, Li Lei3*, Zhang Zhibing3   

  • Online:2016-03-25 Published:2016-03-25
  • About author:(1. School of The Environment, Nanjing University, Nanjing, 210046, China2. Jiangsu Huayi Chemicals Co., Ltd., Changshu, 215522, China; 3. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China)

摘要: 采用热致相分离法制备了等规聚丙烯(iPP)-聚乳酸(PLA)共混中空纤维膜,并在碱性条件下水解膜表面的聚乳酸而产生亲水性基团, 从而提高共混膜的表面亲水性。 讨论了热致相法制膜中稀释剂配比对于共混膜的力学性能以及气体渗透性能的影响,表征了水解前后膜的接触角变化。电镜结果表明,聚乳酸颗粒呈1020 μm多孔状球状粒子均匀分散于共混膜的内部和表面,两种高分子组分表现为部分相容。此外力学性能结果发现共混膜的断裂伸长率高于iPP膜,而气体渗透性能结果证明稀释剂配比为5:5时通量最佳。最后接触角测试表明,共混膜水解后亲水性获得大幅度提高。

Abstract: The purpose of this work is to fabricate porous iPP membrane with uniformly dispersed PLA porous particles inside. In order to extend its application in biomedical field, surface hydrophilic modification was carried out. In this study, iPP - PLA (poly (lactic acid)) blend hollow fiber membranes were prepared via thermally induced phase separation (TIPS) method and PLA surface ester group hydrolysis under alkali solution was applied to improve its hydrophilicity. The effect of different diluent mixture ratio on the mechanical properties was measured and compared by tensile strength tests. For further evaluation of potential biomedical application in blood gas separation like membrane oxygenator, O2 and CO2 gas permeation properties of the iPP–PLA membrane was investigated, and optimized fabrication parameter was then selected. Water contact angle was measured to indicate hydrophobic to hydrophilic change after surface alkali hydrolysis. The SEM was used to characterize the morphology of the membrane and the results showed that in iPP–PLA blend system, with MAH-g-PP as surfactant agent, partially miscible was observed and porous PLA particles, also formed via TIPS, dispersed in iPP matrix uniformly with 10-20 μm in size. Mechanical property measurements showed that iPP–PLA membrane demonstrates larger elongation at break than iPP membrane and biggest gas permeation rate was achieved with 5:5 diluent ratio. After hydrolysis, smaller water contact angle of iPP–PLA hollow fiber membrane surface indicates significantly hydrophilic improvement.

[1] 韩笑. 具有分离性中空多孔聚丙烯纤维的研究. 博士学位论文. 大连工业大学, 2010.
[2] 叶翔宇. 聚丙烯超细纤维的电纺制备与功能化. 博士学位论文. 浙江大学, 2014.
[3] 蔡  涛,杨  朕,杨  琥等. 羧甲基纤维素接枝聚丙烯酰胺的制备及其絮凝性能研究. 南京大学学报(自然科学), 2013, 04: 500-505.
[4] Hamad K, Kaseem M, Deri F. Rheological and mechanical characterization of poly(lactic acid)/polypropylene polymer blends. Journal of Polymer Research, 2011, 18(6): 1799-1806.
[5] Choudhary P, Mohanty S, Nayak S K, et al. Poly(L-lactide)/polypropylene blends: Evaluation of mechanical, thermal, and morphological characteristics. Journal of Applied Polymer Science, 2011, 121(6): 3223-3237.
[6] Reddy N, Nama D, Yang Y Q. Polylactic acid/polypropylene polyblend fibers for better resistance to degradation. Polymer Degradation and Stability, 2008, 93(1): 233-241.
[7] Yoo T W, Yoon H G, Choi S J, et al. Effects of compatibilizers on the mechanical properties and interfacial tension of polypropylene and poly(lactic acid) blends. Macromolecular Research, 2010, 18(6): 583-588.
[8] Zhang Y C, Wu H Y, Qiu Y P. Morphology and properties of hybrid composites based on polypropylene/polylactic acid blend and bamboo fiber. Bioresource Technology, 2010, 101(20): 7944-7950.
[9] 殷海燕, 刘耀东, 黄 鑫等. 聚砜膜的低温等离子体改性及其在膜式氧合器的应用. 膜科学与技术, 2014, 04: 50-55.
[10] 吕 权 殷海燕, 虞文魁等. 膜式氧合器中聚砜非对称膜的制备及表征. 膜科学与技术, 2013, 05: 25-29, 53.
[11] Croll T I, O’connor A J, Stevens G W, et al. Controllable surface modification of poly(lactic-co-glycolic acid) (PLGA) by hydrolysis or aminolysis I: Physical, chemical, and theoretical aspects. Biomacromolecules, 2004, 5(2): 463-473.
[12] Liu M, Chen D G, Xu Z L, et al. Effects of nucleating agents on the morphologies and performances of poly(vinylidene fluoride) microporous membranes via thermally induced phase separation. Journal of Applied Polymer Science, 2013, 128(1): 836-844.
[13] 杨振生. 热致相分离法iPP中空纤维微孔膜及其形态结构研究. 博士学位论文. 天津大学, 2005.
[14] Liu S J, Zhao B, He D N. Crystallization and microporous membrane properties of ultrahigh molecular weight polyethylene with dibenzylidene sorbitol. Journal of Applied Polymer Science, 2014, 131(17).
[15] Lin Z D, Chen C, Guan Z X, et al. Polypropylene/poly (lactic acid) semibiocomposites modified with two kinds of intumescent flame retardants. Polymer-Plastics Technology and Engineering, 2012, 51(10): 991-997.
[16] Arvidson S A, Roskov K E, Pate J J, et al. Modification of melt-spun isotactic polypropylene and poly(lactic acid) bicomponent filaments with a premade block copolymer. Macromolecules, 2012, 45(2): 913-925.
[17] Ye X Y, Lin F W, Huang X J, et al. Polymer fibers with hierarchically porous structure: Combination of high temperature electrospinning and thermally induced phase separation. Rsc Advances, 2013, 3(33): 13851-13858.
[18] 吴术球, 雷彩红, 石文强等. 冷拉程度对聚丙烯微孔膜结构和性能的影响. 高分子材料科学与工程, 2013, 12: 90-93.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!