南京大学学报(自然科学版) ›› 2016, Vol. 52 ›› Issue (2): 235–.

• • 上一篇    下一篇

石墨烯和氧化石墨烯的生物体毒性研究进展

李 婷1,张超智1,2*,沈 丹1,袁 阳1   

  • 出版日期:2016-03-25 发布日期:2016-03-25
  • 作者简介:(1.南京信息工程大学环境科学与工程学院南京,210044; 2.江苏省大气环境监测与污染控制高技术研究重点实验室南京,210044)
  • 基金资助:
    基金项目:江苏特聘教授科研经费(R2012T01),江苏省产学研项目(BY2012028),教育部留学回国启动基金(2013S010)
    收稿日期:2015-12-31
    *通讯联系人,E-mail:chzhzhang@sohu.com

Progress in toxicity of graphene and graphene oxide in organisms

Li Ting1,Zhang Chaozhi1,2*,Shen Dan1,Yuan Yang1   

  • Online:2016-03-25 Published:2016-03-25
  • About author:(1.210044 2.210044) Progress in toxicity of graphene and graphene oxide in organisms Li Ting1Zhang Chaozhi1,2*Shen Dan1Yuan Yang1 (1. Nanjing University of Information Science and Technology, Nanjing, 210044, China; 2. Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing, 210044China)

摘要: 由于石墨烯功能材料具有优异的电子、光学等特性,已经被广泛应用在光伏电池、航空航天、生物传感、疾病诊断、细菌抑制、抗病毒材料等领域。随着其广泛的研究和应用,石墨烯和氧化石墨烯衍生物开始在空气、水和土壤中出现。这类物质粒径很小,容易进入生物体,与组织、细胞、细胞器和蛋白质等生物大分子相互作用,导致组织或细胞的功能紊乱。然而目前关于石墨烯及其衍生物的生物体毒性研究还不多。主要综述了近几年石墨烯和氧化石墨烯衍生物对生物体的影响,分析石墨烯相关材料对生物体作用的毒性机理,阐述其生物危害性,为石墨烯类产业发展所需要防范的环境风险提供基础信息,最后提出了对石墨烯及其衍生物进行定量研究生物毒性的重要性,以及含石墨烯类垃圾的处理方法。

Abstract: Graphene and graphene oxide (GO) have widely been applied in optoelectronic materials, biomedicine, wastewater and drinking water treatment, medical apparatus,  bacteriostatic and anti-viral, degradation organic pollutant and coating materials for filtration since graphene was discovered in 2004. In 2014, requirement of graphene is up to 1000 tons in the world. With graphene derivatives being widely used as functional materials, graphene derivative particles have been existed in air, water and soil. Graphene and GO from environment can easily enter organisms to interact with tissues, cells, organelles and other biological macromolecules due to their small size. It would be further result in abnormal function of organisms. In this paper, toxicity of graphene and graphene oxide derivative for living things was summarized. Mechanisms of graphene derivatives harming organs of living things were reviewed. The environmental risks of grapheme and graphene oxide were evaluated. At last, the article provides information about the health risks of graphene and oxidation graphene. We also recommend that the quantitative research in toxicity of graphene and graphene oxide derivative for organisms is of important. What’s more, potential degradation methods of graphene derivatives were suggested.

[1].Sanchez V C,Jackhak A,Hurt R H,et al. Biological interactions of graphene-family nanomaterials: An interdisciplinary review. Chemical Research in Toxicology, 2012, 25(1): 15-34.
[2].Yang K,Feng L Z,Hong H,et al. Preparation and functionalization of graphene nanocomposites for biomedical applications. Small, 2013, 8(12): 1492-1503.
[3].Zhao J,Wang Z Y,White J C,et al. Graphene in the aquatic environment: Adsorption, dispersion, toxicity and transformation. Environmental Science & Technology, 2014, 48(17): 9995-10009.
[4].Kostarelos K,Kostya S N. Exploring the interface of graphene and biology. Materials Science, 2014, 344 (6181): 261-263.
[5].Wu L,Wang J,Yin M,et al. Reduced graphene oxide upconversion nanoparticle hybrid for electrochemiluminescent sensing of a prognostic indicator in early-stage cancer. Small, 2014, 10(2): 330-336.
[6].Akhavan O,Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. American Chemical Society Nano, 2010, 4(10): 5731-5736.
[7].Hu W,Peng C,Luo W,et al. Graphene-based antibacterial paper. American Chemical Society Nano, 2010, 4(7): 4317-4323.
[8].Akhavan O,Ghaderi E. Escherichia colibacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon, 2012, 50(5): 1853-1860.
[9].Liu S,Zeng T H,Hofmann M,et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. American Chemical Society Nano, 2011, 5(9): 6971-6980.
[10].Akhavan O,Choobtashani M,Ghaderi E. Protein degradation and RNA efflux of viruses photocatalyzed by graphene-tungsten oxide composite under visible light irradiation. Journal of Materials Chemistry, 2012, 116(17): 9653-9659.
[11].Bianco A,Cheng H M,Enoki T,et al. All in the graphene family-a recommended nomenclature for two-dimensional carbon materials. Carbon, 2013, 65, 1-6.
[12].Bolotin K I,Sikes K J,Jiang Z,et al. Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008, 146(9-10): 351-355.
[13].Stoller M D,Park S J,Zhu Y W,et al. Graphene-based ultracapacitors. Nano Letters, 2008, 8(10): 3498-3502.
[14].Balandin A A,Ghosh S,Bao W Z,et al. Superior thermal conductivity of single-layer graphene. Nano Letters, 2008, 8(3): 902-907.
[15].Lee C,Wei X D,Kysar J W,et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385-388.
[16].Cai W W,Zhu Y W,Li X S,et al. Large area few-layer graphene/graphite films as transparent thin conducting electrodes. Applied Physics Letters, 2009, 95(12): 12-115.
[17].Mkhoyan K A,Contryman A W,Silcox J,et al. Atomic and electronic structure of graphene-oxide. Nano Letters, 2009, 9(3): 1058-1063.
[18].He H,Klinowski J. A new structural model for graphite oxide. Chemical Physics Letters, 1998, 287(1-2): 53-56.
[19].Matsuo Y,Sugie Y. Preparation, structur and electrochemical property of pyrolytic carbon from graphite oxide. Carbon, 1998, 36(3): 301-303.
[20].Ramesh P,Bhagyalakshmi S,Sampath S. Preparation and physicochemical and electrochemical characterization of exfoliated graphite oxide. Journal of Colloid and Interface Science, 2004, 274(1): 95-102.
[21].Hummers W S,Offeman R E. Preparation of graphitic oxide. Journal of the American Chemical Society, 1958, 80(6): 1339-1339.
[22].Dreyer D R, Park S, Bielawski C W,et al. The chemistry of graphene oxide. Journal of the Chemical Society, 2010, 39(1): 228-240.
[23].Gurunathan S,Han J W,Eppakayala V,et al. Green synthesis of graphene and its cytotoxic effects in human breast cancer cells. International Journal of Nanomedicine, 2013, 8(1): 1015-1027.
[24].Amedea B S,Amauri J P,Renata D L,et al. Nanotoxicity of graphene and graphene oxide. Chemical Research in Ttoxicology, 2014, 27 (2): 159-168.
[25].Gurunathan S,Han J W,Eppakayala V,et al. Biocompatibility of microbially reduced graphene oxide in primary mouse embryonic fibroblast cells. Colloids and Surfaces B-Biointerfaces, 2013, 105, 58-66.
[26].Zhang Y,Ali S F,Dervishi E,et al. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. American Chemical Society Nano, 2010, 4(6): 3181-3186.
[27].Chang Y,Yang S T,Liu J H,et al. In vitrotoxicity evaluation of graphene oxide on A549 cells. Toxicology Letters, 2011, 200(3): 201-210.
[28].Gurunathan S,Han J W,Dayem A,et al. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in pseudomonas aeruginosa. International Journal of Nanomedicine, 2012, 7, 5901-5914.
[29].Akhavan O,Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. American Chemical Society Nano, 2010, 4(10): 5731-5736.
[30].Hu W,Peng C,Luo W,et al. Graphene-based antibacterial paper. American Chemical Society Nano, 2010, 4(7): 4317-4323.
[31].Chen J,Wang X,Han H. A new function of graphene oxide emerges: Inactivating phytopathogenic bacterium xanthomonas oryzae pv. oryzae. Journal of nanoparticle research, 2013, 15, 1658-1671.
[32].Luan B,Tien H,Zhao L,et al. Potential toxicity of graphene to cell functions via disrupting protein-protein Interactions. American Chemical Society Nano, 2015, 9(1): 663-669.
[33].Ahmed F,Rodrigues D F. Investigation of acute effects of graphene oxide on wastewater microbial community: A case study. Journal of Hazardous Materials, 2013, 256, 33-39.
[34].Robinson J T,Tabakman S M,Liang Y,et al. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. Journal of the American Chemical Society, 2011, 133(17): 6825-6831.
[35].Wojtoniszak M,Chen X,Kalenczuk R J,et al. Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Colloids and Surfaces B-Biointerfaces, 2012, 89, 79-85.
[36].Zhang Y,Ali S F,Dervishi E,et al. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. American Chemical Society Nano, 2010, 4(6): 3181-3186.
[37].Lv M,Zhang Y,Liang L,er al. Effect of graphene oxide on undifferentiated and retinoic acid-differentiated SH-SY5Y cells line. Nanoscale, 2012, 4(13): 3861-3866.
[38].Vallabani N V,Mittal S,Shukla R K,et al. Toxicity of graphene in normal human lung cells (BEAS-2B). Journal of Biomedical Nanotechnology, 2011, 7(1): 106-107.
[39].Chowdhury S M,Lalwani G, Zhang K,et al. Cell specific cytotoxicity and uptake of graphene nanoribbons. Biomaterials, 2013, 34(1): 283-293.
[40].Yue H,Wei W,Yue Z,et al. The role of the lateral dimension of graphene oxide in the regulation of cellular responses. Biomaterials, 2012, 33(16): 4013-4021.
[41].Sasidharan A, Panchakarla L S,Sadanandan A R,et al. Hemocompatibility and macrophage response of pristine and functionalized graphene. Small, 2012, 8(8): 1251-1263.
[42].Singh S K, Singh M K,Kulkarni P P,et al. Amine-modified graphene: Thrombo-protective safer alternative to graphene oxide for biomedical applications. American Chemical Society Nano, 2012, 6(3): 2731-2740.
[43].Hu X,Mu L,Wen J,et al. Immobilized smart RNA on graphene oxide nanosheets to specifically recognize and adsorb trace peptide toxins in drinking water. Journal of Hazardous Materials, 2012, 213, 387-392.
[44].Thuy-Duong N,Viet Hung P,Shin E W,et al. The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chemical Engineering Journal, 2011, 170(5): 226-232.
[45].Chandra V,Yu S U,Kim S H,et al. Highly selective CO2 capture on N-doped carbon produced by chemical activation of polypyrrole functionalized graphene sheets. Chemical Communications, 2012, 48(5): 735-737.
[46].Chowdhury S M,Lalwani G.,Zhang K,et al. Cell specific cytotoxicity and uptake of graphene nanoribbons. Biomaterials, 2013, 34(1): 283-293.
[47].Schinwald A,Murphy F A,Jones A,et al. Graphenebased nanoplatelets:new risk to the respiratory system as a consequences of their unusual aerodynamic properties. American Chemical Society Nano, 2012, 6(1): 736-746.
[48].Agemy L,Sugahara K N,Kotamraju V R,et al. Nanoparticle-induced vascular blockade in human prostate cancer. Blood, 2010, 116(15): 2847-2856.
[49].Qiao Y,An J,Ma L. Single cell array based assay for in vitro genotoxicity study of nanomaterials. Analytical Chemistry, 2013, 85(8): 4107-4112.
[50].Omid A,Elham G,Alireza A. Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials, 2012, 33(32): 8017-8025.
[51].Lu Y,Wang Y,Xu X. Can graphene oxide cause damage to eyesight? Chemical Research in Toxicology, 2012, 25(6): 1265-1270.
[52].Ken H L,Yu S L. Christopher W,et al. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. American Chemical Society Applications Materials Interfaces, 2011, 3(7): 2607-2615.
[53].Guo X,Dong S,Petersen E J,et al. Biological uptake and depuration of radio-labeled graphene by daphnia magna. Environmental Science and Technology, 2013, 47(21): 12524-12531.
[54].Matthew C,Duch G R,Scott B. Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Letters, 2011, 11(12): 5201-5207.
[55].Hu C,Wang Q,Zhao H,et al. Ecotoxicological effects of graphene oxide on the protozoan euglena gracilis. Chemosphere, 2015, 128, 184-90.
[56].Bianco A. Graphene: safe or toxic? The two faces of the medal. Angewandle Chemie, 2013, 52(19): 4986-4997.
[57].Begum P,Ikhtiari R I,Fugetsu B. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon, 2011, 49(12): 3907-3919.
[58].Omid A ,Elham G. Toxicity of graphene and graphene oxide nanowalls against bacteria. American Chemical Society Nano, 2010, 4 (10): 5731-5736.
[59].基金项目:江苏特聘教授科研经费(R2012T01),江苏省产学研项目(BY2012028),教育部留学回国启动基金(2013S010)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 邱 浩,王欣然*. 二硫化钼的电子输运与器件[J]. 南京大学学报(自然科学版), 2014, 50(3): 280 .
[2] 王学锋1,2*,徐永兵1,2*,张 荣1,2. 低维磁性耦合体系的新物性及电/光场调控进展[J]. 南京大学学报(自然科学版), 2014, 50(3): 309 .
[3] 骆乾坤*,吴剑锋2,杨运3,钱家忠1. 渗透系数空间变异程度对进化算法优化结果影响评价[J]. 南京大学学报(自然科学版), 2015, 51(1): 60 -66 .
[4] 孙大军1,2, 王永恒1,2*, 勇俊1,2. 实频数据技术在水声换能器宽带匹配中的应用[J]. 南京大学学报(自然科学版), 2015, 51(6): 1182 -1188 .
[5] 杨政予1,王新龙1
. 茅山军号声现象的进一步研究[J]. 南京大学学报(自然科学版), 2015, 51(6): 1097 -1106 .
[6] 张亚平,2,万宇1,2,聂青3,阮晓红1,2*,王子健4. 湖泊水体中氮的生物地球化学过程及其生态学意义[J]. 南京大学学报(自然科学版), 2016, 52(1): 5 -15 .
[7] 李荣富1,2,罗跃辉 ,2,曾洪玉1,2,阮晓红1,2*,刘丛强3*. 稳定同位素技术在环境水体氮的生物地球化学循环研究中的应用[J]. 南京大学学报(自然科学版), 2016, 52(1): 16 -26 .
[8] 涂 臻*,卢 晶 . 散射条件下小尺度扬声器阵列声聚焦算法鲁棒性研究[J]. 南京大学学报(自然科学版), 2016, 52(2): 382 .
[9] 葛 勇1,孙宏祥1,2*,袁寿其1,夏建平1,管义钧1 . 含对称三角形腔的波导管中宽带低频隔声效应[J]. 南京大学学报(自然科学版), 2016, 52(4): 619 .
[10] 季 阳,单 丹,钱明庆,李 伟,徐 骏*,陈坤基. 镶嵌于非晶碳化硅中的高导电性掺杂纳米晶硅的制备与电学性能研究[J]. 南京大学学报(自然科学版), 2016, 52(5): 780 .