南京大学学报(自然科学版) ›› 2019, Vol. 55 ›› Issue (3): 478–485.doi: 10.13232/j.cnki.jnju.2019.03.015

• • 上一篇    下一篇

宽频带超材料微波吸收结构研究

朱 逸,李 歌,唐东明,张豹山,杨 燚*   

  1. 南京大学电子科学与工程学院,南京,210023
  • 收稿日期:2019-01-25 出版日期:2019-06-01 发布日期:2019-05-31
  • 通讯作者: 杨 燚 E-mail:malab@nju.edu.cn
  • 基金资助:
    国家自然科学基金(61271077,11004095,11104134)

Study on broadband metamaterial microwave absorber

Zhu Yi,Li Ge,Tang Dongming,Zhang Baoshan,Yang Yi*   

  1. School of Electronic Science and Engineering,Nanjing University,Nanjing,210023,China
  • Received:2019-01-25 Online:2019-06-01 Published:2019-05-31
  • Contact: Yang Yi E-mail:malab@nju.edu.cn

摘要: 将3D超材料吸波结构和磁性吸波材料相结合使用,对宽频带微波超材料吸收结构进行了设计优化和电磁场仿真研究. 利用磁性材料本身的电磁波吸收性能和周期性超材料吸波单元的频率可设计性,并充分考虑了3D渐变单元的电磁场匹配和多次反射吸收的情况,设计了由圆台形单元组成的周期性吸波结构:每个圆台由20层尺寸渐变的金属谐振单元和以羰基铁粉为吸波填充材料的磁性复合层相间堆叠而成. 采用电磁仿真软件CST Microwave Studio进行了结构设计以及吸波效果和电磁场分析,结果表明:此结构在4.5 G~18 GHz频率范围内电磁波吸收效果较好,正入射的吸收率大于90%. 仿真和分析结果也表明,吸波材料和超材料相结合,在厚度不超过5 mm的情况下,所能够实现的吸波频率的下限约为4 GHz.

关键词: 超材料, 吸波材料, 超宽频, 羰基铁粉, 电磁仿真

Abstract: In this paper,the optimization of one kind of ultra-broadband metamaterial microwave absorber has been carried out by electromagnetic field simulation and theoretical analysis,combining 3D metamaterial absorbing structure with traditional magnetic material. Making full use of the electromagnetic wave absorption of the magnetic material and the frequency designability of the periodic metamaterial structure,and taking account of the impedance matching,multiple reflection and absorption of the electromagnetic field of the 3D gradient unit,a periodic absorbing structure which consists of frustums of a cone is designed. Each frustum consists of 20 layers of metal resonant sheets with the size linearly enlarged and 20 layers of magnetic complex filled with carbonyl iron powder. The two kinds of layers are stacked one another,and the whole bottom is set as a perfect metal reflect layer. The electromagnetic simulation software CST Microwave Studio 2010 is used to design the structure,calculate the absorbing effect and analyze the distribution of electromagnetic field of the absorbing structure.After the optimization of the relevant parameters,the final simulation results show that the structure has an effective absorption in the frequency range of 4.5 G~18 GHz,and the absorption rate of normal incidence is more than 90%. The analysis and simulation results also show that when the thickness of absorbing material is not more than 5 mm,the lower limit of absorbing frequency can be achieved by combining magnetic material with metamaterial,which is about 4 GHz. As a result,it is difficult to further broaden the absorption band to the range of low frequency,such as L,S band and lower frequencies,which poses more challenges to the related research in the future.

Key words: metamaterial, microwave absorber, ultra-broadband, carbonyl iron powder, electromagnetic simulation

中图分类号: 

  • TB333
[1] 王国栋. 电磁超材料的设计及其吸波性能的研究. 博士学论文. 武汉:华中科技大学,2014.(Wang G D. The design of electromagnetic metamaterials and its absorption characteristics. Ph.D. Dissertation. Wuhan:Huazhong University of Science and Technology,2014.)
[2] 崔万照,马 伟,邱乐德等. 电磁超介质及其应用. 北京:国防工业出版社,2008,8.
[3] Smith D R,Pendry J B,Wiltshire M C K. Metamaterials and negative refractive index. Science,2004,305(5685):788-792.
[4] Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi,1968,10(4):509-514.
[5] Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters,2000,85(18):3966-3969.
[6] Schurig D,Mock J J,Justice B J,et al. Metamaterial electromagnetic cloak at microwave frequencies. Science,2006,314(5801):977-980.
[7] Palandoken M,Grede A,Henke H. Broadband microstrip antenna with left-handed metama-terials. IEEE Transactions on Antennas & Propagation,2009,57(2):331-338.
[8] Landy N I,Sajuyigbe S,Mock J J,et al. Perfect metamaterial absorber. Physical Review Letters,2008,100(20):207402.
[9] Tao H,Landy N I,Bingham C M,et al. A metamaterial absorber for the terahertz regime:Design,fabrication and characterization. Optics Express,2008,16(10):7181-7188.
[10] Landy N I,Bingham C M,Tyler T,et al. Design,theory,and measurement of a polarization-insensitive absorber for terahertz imaging. Physical Review B,2009,79(12):125104.
[11] 顾 超,曲少波,裴志斌等. 基于电阻膜的宽频带超材料吸波体的设计. 物理学报,2011,60(8):087802.(Gu C,Qu S B,Pei Z B,et al. Design of a wide-band metamaterial absorber based on resistance films. Acta Physica Sinica,2011,60(8):087802.)
[12] 高海涛,王建江,李 泽. 基于超材料设计的钡铁氧体吸波涂层研究. 材料工程,2019,47(1):70-76.(Gao H T,Wang J J,Li Z. Barium ferrite microwave absorbing coating based on metamaterial design. Journal of Materials Engineering,2019,47(1):70-76.)
[13] Shen Z Y,Xiang T Y,Wu J,et al. Tunable and polarization insensitive electromagnetically induced transparency using planar metamaterial. Journal of Magnetism and Magnetic Materials,2019,476:69-74.
[14] Lin Y S,Yan K H,Yao D Y,et al. Investigation of electromagnetic response of terahertz metamaterial by using split-disk resonator. Optics & Laser Technology,2019,111:509-514.
[15] Chen C,Xi J B,Zhou E Z,et al. Porous graphene microflowers for high-performance microwave absorption. Nano-Micro Letters,2018,10(2):26.
[16] Hoa N T Q,Lam P H,Tung P D. Wide-angle and polarization-independent broadband microwave metamaterial absorber. Microwave & Optical Technology Letters,2017,59(5):1157-1161.
[17] Zhu B,Feng Y J,Zhao J M,et al. Switchable metamaterial reflector/absorber for different polarized electromagnetic waves. Applied Physics Letters,2010,97(5):051906.
[18] 张燕萍,赵晓鹏,保 石等. 基于阻抗匹配条件的树枝状超材料吸收器. 物理学报,2010,59(9):6078-6083.(Zhang Y P,Zhao X P,Bao S,et al. Dendritic metamaterial absorber based on the impedance matching. Acta Physica Sinica,2010,59(9):6078-6083.)
[19] Ding F,Cui Y X,Ge X C,et al. Ultra-broadband microwave metamaterial absorber. Applied Physics Letters,2011,100(10):103506.
[20] 王 莹,程用志,聂 彦等. 基于集总元件的低频宽带超材料吸波体设计与实验研究. 物理学报,2013,62(7):074101.(Wang Y,Cheng Y Z,Nie Y,et al. Design and experiments of low-frequency broadband metamaterial absorber based on lumped elements. Acta Physica Sinica,2013,62(7):074101.)
[1] 林远鹏,梁彬,杨京,程建春. 可实现宽频宽角度隔声的薄层通风结构[J]. 南京大学学报(自然科学版), 2019, 55(5): 791-795.
[2] 李 歌,朱 逸,过勐超,唐东明,张豹山,杨 燚. 嵌入频率选择表面的薄层宽带磁性吸波材料研究[J]. 南京大学学报(自然科学版), 2019, 55(3): 470-477.
[3] 宋刚永1,黄 蓓1,宋 海2,程 强1*. 基于分形声学超材料的宽带声聚焦透镜[J]. 南京大学学报(自然科学版), 2017, 53(1): 61-.
[4] 蓝 君1,李义丰1,2*. 密度为零的零折射率声学超材料研究[J]. 南京大学学报(自然科学版), 2017, 53(1): 69-.
[5] 朱一凡1,2,范旭东1,2,梁 彬1,2*,杨 京1,2程建春1,2*. 基于声学超材料的无源声学循环器的设计[J]. 南京大学学报(自然科学版), 2017, 53(1): 76-.
[6] 欧阳溯源,孟 杨,景晓东*. 气球状声学超材料软质共振单元研究[J]. 南京大学学报(自然科学版), 2015, 51(7): 10-.
[7] 陆慧颖,宋刚永,程强*. 二维声学超材料透镜的设计与实验[J]. 南京大学学报(自然科学版), 2015, 51(6): 1114-1119.
[8] 金飚兵*, 冯一军, 伍瑞新. 人工电磁超材料的电磁波调控特性[J]. 南京大学学报(自然科学版), 2014, 50(3): 235-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王大洋. 渤南洼陷沙三下亚段烃源岩地球化学特征及差异性研究[J]. 南京大学学报(自然科学版), 2019, 55(6): 924 -933 .
[2] 汪敏,赵飞,闵帆. 储层预测的代价敏感主动学习算法[J]. 南京大学学报(自然科学版), 2020, 56(4): 561 -569 .