南京大学学报(自然科学版) ›› 2019, Vol. 55 ›› Issue (3): 470–477.doi: 10.13232/j.cnki.jnju.2019.03.014

• • 上一篇    下一篇

嵌入频率选择表面的薄层宽带磁性吸波材料研究

李 歌,朱 逸,过勐超,唐东明,张豹山,杨 燚*   

  1. 南京大学电子科学与工程学院,南京,210023
  • 收稿日期:2018-12-26 出版日期:2019-06-01 发布日期:2019-05-31
  • 通讯作者: 杨 燚 E-mail:malab@nju.edu.cn
  • 基金资助:
    国家自然科学基金(61271077,11004095,11104134)

Research on thin and broadband magnetic absorbing materials with embedded frequency selective surfaces

Li Ge,Zhu Yi,Guo Mengchao,Tang Dongming,Zhang Baoshan,Yang Yi*   

  1. School of Electronic Science and Engineering,Nanjing University,Nanjing,210023,China
  • Received:2018-12-26 Online:2019-06-01 Published:2019-05-31
  • Contact: Yang Yi E-mail:malab@nju.edu.cn

摘要: 介绍一种在两层磁性材料之间嵌入频率选择表面的薄层复合吸波结构的宽带吸收特性. 频率选择表面由金属方环阵列和低耗介质板构成,其上层、下层磁性材料为不同电磁参数的羰基铁复合物. 不加频率选择表面的传统磁性吸波材料若想在宽带取得良好的吸收效果,需要较大的厚度和面密度,导致其应用范围受限. 引入频率选择表面能够增强复合吸波结构的吸收频带,并有效减薄吸波结构的厚度. 在阻抗匹配条件下,电磁能量主要通过金属单元的欧姆损耗和底层磁性材料的磁损耗进行吸收. 为了验证该复合吸波体的吸波性能,在电磁仿真软件HFSS 15.0上搭建模型,而后根据仿真结果对结构参数不断进行优化. 最终的仿真结果表明,复合吸波材料厚度为2 mm,2 GHz处反射率可达-5.5 dB,在3.4 G~9 GHz频段反射率为-10 dB,在9 G~18 GHz频段反射率依旧达到-8 dB以下. 而无频率选择表面的复合吸波材料,在同等条件下,虽然峰值吸收率较大,但在12 GHz以上吸波性能快速恶化,难以满足宽带吸波的要求. 因此,含频率选择表面的复合吸波体具有吸收频带宽的优势,具有广泛的应用前景.

关键词: 吸波材料, 频率选择表面, 羰基铁, 反射率, 电磁仿真

Abstract: Microwave absorption properties of thin composites containing frequency selective surfaces(FSS)embedded in magnetic absorbing material(MAM)are presented in this paper. The FSS is composed of a regular array of square loop elements and a low-loss dielectric flat as the substrate. The top and bottom magnetic absorbing materials are carbonyl iron composites with different electromagnetic parameters. It is difficult to obtain good microwave absorption properties only using the conventional magnetic absorber without FSS embedded in a broadband frequency range. The thickness of the magnetic absorber will be too large,and subsequently the surface density of the absorber will be greatly increased,which will limit its application regions. Introducing FSS can enhance the microwave absorption ability of magnetic composites,especially in the low frequency range,and hence broaden the absorption band as well as effectively reduce the thickness of the absorber. Under the condition of surface impedance matching,the ohmic dissipation originating from metal elements of FSS and the magnetic loss originating from the bottom layer are the main mechanism to absorb electromagnetic energy. In order to investigate the microwave absorption properties of the composite structure,we built the model using the electromagnetic simulation software HFSS 15.0,and then continuously optimized the structural parameters based on the simulation results. The final simulation results show that the composite microwave absorber with the thickness of 2 mm has an operating bandwidth with the reflectivity below -10 dB in the frequency range of 3.4 G~9 GHz and -8 dB in the frequency range of 9 G~18 GHz. The absorber obtains -5.5 dB reflectivity at 2 GHz. Compared with the absorber without FSS inserted under the same condition,though the higher peak absorption could be achieved using the absorber without FSS,the microwave absorption properties become worse and worse,and hardly meet the requirement of broadband absorption. The composite microwave absorber with FSS inserted,which has a broad absorption band and excellent low-frequency absorption characteristics,has a wide application prospect.

Key words: microwave absorption material, frequency selective surfaces(FSS), carbonyl iron, reflectivity, electromagnetic simulation

中图分类号: 

  • TB333
[1] 顾 超,屈绍波,裴志斌等. 基于电阻膜的宽频带超材料吸波体的设计. 物理学报,2011,60(8):087802.(Gu C,Qu S B,Pei Z B,et al. Design of a wide-band metamaterial absorber based on resistance films. Acta Physica Sinica,2011,60(8):087802.)
[2] Ding F,Cui Y X,Ge X C,et al. Ultra-broadband microwave metamaterial absorber. Applied Physics Letters,2012,100(10):103506.
[3] Park M J,Choi J,Kim S S. Wide bandwidth pyramidal absorbers of granular ferrite and carbonyl iron powders. IEEE Transactions on Magnetics,2000,36(5):3272-3274.
[4] Yang J,Shen Z X. A thin and broadband absorber using double-square loops. IEEE Antennas and Wireless Propagation Letters,2007,6(11):388-391.
[5] Tang W,Shen Z X. Simple design of thin and wideband circuit analogue absorber. Electronics Letters,2007,43(12):689-691.
[6] Li Y Q,Zhang H,Hu Y Q,et al. RCS reduction of ridged waveguide slot antenna array using EBG radar absorbing material. IEEE Antennas and Wireless Propagation Letters,2008,7:473-476.
[7] Feng Y B,Qiu T,Shen C Y,et al. Electromagnetic and absorption properties of carbonyl iron/rubber radar absorbing materials. IEEE Transactions on Magnetics,2006,42(3):363-368.
[8] Zhang B S,Feng Y,Xiong H,et al. Microwave-absorbing properties of de-aggregated flake-shaped carbonyl-iron particle composites at 2-18 GHz. IEEE Transactions on Magnetics,2006,42(7):1778-1781.
[9] Chen H Y,Zhang H B,Deng L J. Design of an ultra-thin magnetic-type radar absorber embedded with FSS. IEEE Antennas and Wireless Propagation Letters,2010,9(1):899-901.
[10] Yuan W,Chen Q,Xu Y S,et al. Broadband microwave absorption properties of ultrathin composites containing edge-split square-loop FSS embedded in magnetic sheets. IEEE Antennas and Wireless Propagation Letters,2017,16:278-281.
[11] Fan Y N,Nie Y,Liao Z Q,et al. Design of ultra-thin absorbers embedded with fractal frequency selective surface in low frequency. Journal of Inorganic Materials,2012,27(12):1336-1340.
[12] Kazantsev Y N,Lopatin A V,Kazantseva N E,et al. Broadening of operating frequency band of magnetic-type radio absorbers by FSS incorporation. IEEE Transactions on Antennas and Propagation,2010,58(4):1227-1235.
[13] Thi Quynh Hoa N,Huu Lam P,Duy Tung P. Wide-angle and polarization-independent broadband microwave metamaterial absorber. Microwave and Optical Technology Letters,2017,59(5):1157-1161.
[14] Zhu B,Feng Y J,Zhao J M,et al. Switchable metamaterial reflector/absorber for different polarized electromagnetic waves. Applied Physics Letters,2010,97(5):051906.
[15] 张燕萍,赵晓鹏,保 石等. 基于阻抗匹配条件的树枝状超材料吸收器. 物理学报,2010,59(9):6078-6083.(Zhang Y P,Zhao X P,Bao S,et al. Dendritic metamaterial absorber based on the impedance matching. Acta Physica Sinica,2010,59(9):6078-6083.)
[16] Gill N,Puthucheri S,Singh D,et al. Critical analysis of frequency selective surfaces embedded composite microwave absorber for frequency range 2-8 GHz. Journal of Materials Science:Materials in Electronics,2017,28(2):1259-1270.
 
[1] 朱 逸,李 歌,唐东明,张豹山,杨 燚. 宽频带超材料微波吸收结构研究[J]. 南京大学学报(自然科学版), 2019, 55(3): 478-485.
[2] 蒋璐媛1,2,3,肖鹏峰1,2,3*,冯学智1,2,3,耶楠1,2,3,贺广均1,2,3,4,张学良1,2,3. 山区复杂地形条件下GF-1卫星遥感雪面反射率计算[J]. 南京大学学报(自然科学版), 2015, 51(5): 944-954.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 尹学渊, 陈兴蜀, 陶术松, 陈 林. 一种无代理虚拟机进程监控方法[J]. 南京大学学报(自然科学版), 2019, 55(2): 221 -230 .
[2] 陈晓冬, 底晓强, 李锦青. 基于多混沌和分数Fourier的光学图像加密算法[J]. 南京大学学报(自然科学版), 2019, 55(2): 251 -263 .
[3] 张勋, 石婉玲, 赵祝萱, 朱聪, 李维智, 贾叙东. 生物基聚醚胺型苯并噁嗪树脂的制备与性能研究[J]. 南京大学学报(自然科学版), 2019, 55(5): 832 -839 .