南京大学学报(自然科学版) ›› 2019, Vol. 55 ›› Issue (5): 832–839.doi: 10.13232/j.cnki.jnju.2019.05.017

• • 上一篇    下一篇

生物基聚醚胺型苯并噁嗪树脂的制备与性能研究

张勋,石婉玲,赵祝萱,朱聪,李维智,贾叙东()   

  1. 南京大学化学化工学院,南京,210023
  • 收稿日期:2019-04-30 出版日期:2019-09-30 发布日期:2019-11-01
  • 通讯作者: 贾叙东 E-mail:jiaxd@nju.edu.cn
  • 基金资助:
    国家自然科学基金(21875102)

Synthesis and properties of bio⁃based polyetheramine benzoxazine resin

Xun Zhang,Wanling Shi,Zhuxuan Zhao,Cong Zhu,Weizhi Li,Xudong Jia()   

  1. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
  • Received:2019-04-30 Online:2019-09-30 Published:2019-11-01
  • Contact: Xudong Jia E-mail:jiaxd@nju.edu.cn

摘要:

以生物质原料双酚酸甲酯(MDP)和双酚A(BA)为酚源,以聚醚胺D230为胺源与多聚甲醛经Mannich反应制得不同比例BA与MDP的苯并噁嗪前驱体.利用核磁共振(1H NMR)和红外光谱(FTIR)对苯并噁嗪前驱体的化学结构进行了表征,结果表明制备得到的产物与所设计的结构相符.利用差示扫描量热法(Differential Scanning Calorimeter,DSC)对得到产物的热性能进行表征,结果表明所得前驱体的固化起始温度(Tonset)为208.0~225.9 ℃,固化峰值温度(T peak)为240.0~246.6 ℃,与石油基纯BA制备得到的前驱体样品比较,两者固化温度相当.通过热重分析(Thermogravimetric Analysis,TGA)和拉伸试验对聚苯并噁嗪的力学性能进行了测试,结果表明,制得的聚苯并噁嗪具有较好的热稳定性和力学性能,得到的产物中MDP所占比例最高的聚苯并噁嗪PBA/MDP010?D230具有最佳综合性能.热重分析结果表明,PBA/MDP010?D230在氮气氛围下的5%热失重温度和10%热失重温度分别为356.3 ℃和373.0 ℃,且其在氮气氛围中800 ℃下的残炭率可达38.3%.PBA/MDP010?D230的力学性能测试显示其拉伸强度高达68.9 MPa,同时具有6.6%的断裂伸长率,这一结果表明了其具有较好的力学性能.

关键词: 生物基苯并噁嗪, 双酚酸甲酯, 聚醚胺, 固化动力学, 热性能, 力学性能

Abstract:

In this paper, bio?based raw material bisphenolate methyl ester (MDP) and bisphenol A (BA) were used as phenol sources, polyetheramine D230 was used as amine source and they were reacted with paraformaldehyde via Mannich reaction to obtain bio?based benzoxazine precursor with different ratios of BA and MDP. The chemical structures of benzoxazine precursors were characterized by nuclear magnetic resonance (1H NMR) and infrared spectroscopy (FTIR). The results showed that the obtained products were consistent with the designed structures. The thermal properties of the obtained products were characterized by Differential Scanning Calorimeter (DSC). The results showed that the curing onset temperature (Tonset) of the product was 208.0~222.9 ℃, and the curing peak temperature (Tpeak) was 240.0~246.6 ℃. Compared with the precursor samples prepared from petroleum?based pure BA, the curing temperatures are comparable. The mechanical properties of polybenzoxazine were characterized by thermogravimetric analysis (TGA) and tensile test. The results showed that the obtained polybenzoxazines had good thermal stability and mechanical properties. The polybenzoxazine PBA/MDP010?D230 with the highest ratio of MDP in the products had the best comprehensive performance. The TGA curves showed that the 5% weight loss temperature and 10% weight loss temperature of PBA/MDP010?D230 under nitrogen atmosphere were 356.3 ℃ and 373.0 ℃, respectively, and the char yield at 800 ℃ in nitrogen atmosphere was 38.3%. The mechanical properties of PBA/MDP010?D230 showed that the tensile strength was high to 68.9 MPa and the elongation at break was 6.6%. This result indicated that it had good mechanical properties.

Key words: bio?based benzoxazine, disphenolic acid methyl ester, polyetheramine, curing kinetics, thermal property, mechanical property

中图分类号: 

  • TQ323.1

表1

BA/MDP?D230系列生物基聚醚胺型苯并噁嗪前驱体原料投料比及产率"

样 品 n(BA) n(MDP) n(D230) 产率
BA/MDP100?D230 10 0 10 85.3%
BA/MDP82?D230 8 2 10 89.6%
BA/MDP55?D230 5 5 10 84.2%
BA/MDP28?D230 2 8 10 87.1%
BA/MDP010?D230 0 10 10 80.2%

图1

MDP(a)与生物基聚醚胺型苯并噁嗪前驱体的1H NMR图:(b)BA/MDP100?D230;(c)BA/MDP55?D230;(d)BA/MDP010?D230"

表2

不同BA/MDP比例的生物基醚胺型苯并噁嗪前驱体的闭环率"

样 品 闭环率 (%)
BA/MDP100?D230 81
BA/MDP82?D230 89
BA/MDP55?D230 86
BA/MDP28?D230 88
BA/MDP010?D230 79

图2

不同BA/MDP比例的生物基聚醚胺型苯并噁嗪前驱体FTIR谱图"

图3

不同BA/MDP比例的生物基聚醚胺型苯并噁嗪前驱体的DSC曲线"

表3

不同BA/MDP比例的生物基聚醚胺型苯并噁嗪前驱体的固化数据"

样品 T onset (℃) T peak (℃)
BA/MDP100?D230 196.2 239.4
BA/MDP28?D230 208.0 240.0
BA/MDP55?D230 222.8 244.4
BA/MDP28?D230 220.1 244.2
BA/MDP010?D230 225.9 246.6

图4

BA/MDP55?D230在不同程序固化后的DSC曲线"

表4

BA/MDP55?D230的固化数据"

固化阶段 T onset (℃) T peak (℃) ΔH (cal·g-1)
RT 223.4 246.2 47.2
120 ℃ 223.2 244.8 45.4
160 ℃ 217.8 243.7 38.0
200 ℃ 212.1 240.3 13.6
240 ℃ - - 0

图5

不同BA/MDP比例生物基聚醚胺型聚苯并噁嗪TGA曲线"

表5

不同BA/MDP比例生物基聚醚胺型聚苯并噁嗪的热性能数据"

样 品 Td 5 (℃) Td 10 (℃) 残炭率(%)(N2,800 ℃)
PBA/MDP100?D230 328.7 349.7 34.5
PBA/MDP82?D230 351.3 371.7 37.6
PBA/MDP55?D230 338.7 361.7 38.8
PBA/MDP28?D230 341.7 359.3 37.2
PBA/MDP010?D230 356.3 373.0 38.3
poly(BA?eda)[9] 282 301 31

图6

不同BA/MDP比例生物基聚醚胺型聚苯并噁嗪应力?应变曲线"

表6

不同BA/MDP比例生物基聚醚胺型聚苯并噁嗪的力学性能数据"

样 品 拉伸强度(MPa) 断裂伸长率(%)
PBA/MDP100?D230 68.5 7.8
PBA/MDP82?D230 74.6 7.0
PBA/MDP55?D230 56.5 5.7
PBA/MDP28?D230 55.8 4.4
PBA/MDP010?D230 68.9 6.6
poly(BA?eda)[9] 58 2.4
1 Takeichi T , Kawauchi T . High performance polybenzoxazines as a novel type of network polymer. Kobunshi,2008,57(8):625-628.
2 Ning X , Ishida H . Phenolic materials via ring‐opening polymerization:Synthesis and characteri?zation of bisphenol‐a based benzoxa?zines and their polymers. Journal of Polymer Science Part A:Polymer Chemistry,1994,32(6):1121-1129.
3 Ishida H , Allen D J . Physical and mechanical characterization of near‐zero shrinkage polybenzo?xazines. Journal of Polymer Science Part B:Polymer Physics,2015,34(6):1019-1030.
4 Taskin O S , Kiskan B , Yagci Y . Polybenzoxazine precursors as self?healing agents for polysulfones. Macromolecules,2013,46(22):8773-8778.
5 Agag T , Takeichi T . Effect of hydroxyphenyl?maleimide on the curing behaviour and thermo?mechanical properties of rubber?modified poly?benzoxazine. High Performance Polymers,2001,13(2):S327-S342.
6 Takeichi T , Guo Y , Agag T . Synthesis and characterization of poly(urethane‐benzoxazine) films as novel type of polyurethane/phenolic resin composites. Journal of Polymer Science Part A:Polymer Chemistry,2015,38(22):4165-4176.
7 Ishida H , Lee Y H . Synergism observed in polybenzoxazine and poly(ε?caprolactone) blends by dynamic mechanical and thermogravimetric analysis. Polymer,2001,42(16):6971-6979.
8 Chernykh A , Liu J P , Ishida H . Synthesis and properties of a new crosslinkable polymer containing benzoxazine moiety in the main chain. Polymer,2006,47(22):7664-7669.
9 Takeichi T , Kano T , Agag T . Synthesis and thermal cure of high molecular weight polybenzo?xazine precursors and the properties of the thermosets. Polymer,2005,46(26):12172-12180.
10 Li W Z , Chu J , Liang H ,et al . A novel thermal?resistant copolymer from polysiloxane?based poly?benzoxazine precursor and ferrocene?based benzo?xazine monomer. Polymer,2013,54(18):4909-4922.
11 Thirukumaran P , Shakila A , Muthusamy S . Synthesis and characterization of novel bio?based benzoxazines from eugenol. RSC Advances,2013,4(16):7959-7966.
12 Oliveira J R , Kotzebue L R V , Ribeiro F W M ,et al . Microwave‐assisted solvent‐free synthesis of novel benzoxazines:A faster and environmentally friendly route to the development of bio‐based thermosetting resins. Journal of Polymer Science Part A:Polymer Chemistry,2017,55(21):3534-3544.
13 Zhang C X , Luo X X , Zhu R Q ,et al . Thermal and dielectric properties of epoxy/DDS/CTBN adhesive modified by cardanol?based benzoxazine. Journal of Adhesion Science and Technology,2015,29(8):767-777.
14 Thirukumaran P , Parveen A S , Sarojadevi M . Synthesis and copolymerization of fully biobased benzoxazines from renewable resources. ACS Sustainable Chemistry & Engineering,2014,2(12):2790-2801.
15 Wang C F , Sun J Q , Liu X D ,et al . Synthesis and copolymerization of fully bio?based benzoxazines from guaiacol,furfurylamine and stearylamine. Green Chemistry,2012,14(10):2799-2806.
16 Liu X Y , Zhang R H , Li T Q ,et al . Novel fully biobased benzoxazines from rosin:synthesis and properties. ACS Sustainable Chemistry & Engineering,2017,5(11):10682-10692.
17 Zú?iga C , Larrechi M S , Lligadas G ,et al . Polybenzoxazines from renewable diphenolic acid. Journal of Polymer Science Part A:Polymer Chemistry,2011,49(5):1219-1227.
18 Xiang H , Ling H , Wang J ,et al . A novel high performance RTM resin based on benzoxazine. Polymer Composites,2005,26(5):563-571.
[1] 方厚林*,刘阳,张亮永,杨俊梅,程章. 蜂巢活塞板力学等效仿真分析[J]. 南京大学学报(自然科学版), 2015, 51(7): 45-.
[2]  陈正年 1 ,2 , 丁庆军 1 , 赵淳生 1 .  超声电机用环氧摩擦材料固化动力学研究


[J]. 南京大学学报(自然科学版), 2010, 46(1): 41-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 林 銮,陆武萍,唐朝生,赵红崴,冷 挺,李胜杰. 基于计算机图像处理技术的松散砂性土微观结构定量分析方法[J]. 南京大学学报(自然科学版), 2018, 54(6): 1064 -1074 .
[2] 段新春,施 斌,孙梦雅,魏广庆,顾 凯,冯晨曦. FBG蒸发式湿度计研制及其响应特性研究[J]. 南京大学学报(自然科学版), 2018, 54(6): 1075 -1084 .
[3] 梅世嘉,施 斌,曹鼎峰,魏广庆,张 岩,郝 瑞. 基于AHFO方法的Green-Ampt模型K0取值试验研究[J]. 南京大学学报(自然科学版), 2018, 54(6): 1085 -1094 .
[4] 卢 毅,于 军,龚绪龙,王宝军,魏广庆,季峻峰. 基于DFOS的连云港第四纪地层地面沉降监测分析[J]. 南京大学学报(自然科学版), 2018, 54(6): 1114 -1123 .
[5] 胡 淼,王开军,李海超,陈黎飞. 模糊树节点的随机森林与异常点检测[J]. 南京大学学报(自然科学版), 2018, 54(6): 1141 -1151 .
[6] 洪思思,曹辰捷,王 喆*,李冬冬. 基于矩阵的AdaBoost多视角学习[J]. 南京大学学报(自然科学版), 2018, 54(6): 1152 -1160 .
[7] 魏 桐,童向荣. 基于加权启发式搜索的鲁棒性信任路径生成[J]. 南京大学学报(自然科学版), 2018, 54(6): 1161 -1170 .
[8] 秦 娅, 申国伟, 赵文波, 陈艳平. 基于深度神经网络的网络安全实体识别方法[J]. 南京大学学报(自然科学版), 2019, 55(1): 29 -40 .
[9] 陆慎涛, 葛洪伟, 周 竞. 自动确定聚类中心的移动时间势能聚类算法[J]. 南京大学学报(自然科学版), 2019, 55(1): 143 -153 .
[10] 仲昭朝, 邹 婷, 唐惠炜, 庄 重, 张 臻. 铜胁迫对蚕豆根尖细胞凋亡及线粒体功能的影响[J]. 南京大学学报(自然科学版), 2019, 55(1): 154 -160 .