南京大学学报(自然科学版) ›› 2019, Vol. 55 ›› Issue (3): 361–369.doi: 10.13232/j.cnki.jnju.2019.03.003

所属专题: 测试专题

• 地面沉降 • 上一篇    下一篇

基于扩展有限元的应力强度因子计算精度研究

王哲成1,张 云1*,于 军2,龚绪龙2   

  1. 1.南京大学地球科学与工程学院,南京,210023; 2.江苏省地质调查研究院,南京,210008
  • 收稿日期:2019-02-25 出版日期:2019-06-01 发布日期:2019-05-31
  • 通讯作者: 张 云 E-mail:zhangyun@nju.edu.cn
  • 基金资助:
    国家自然科学基金(41572250),国土资源部地裂缝地质灾害重点实验室开放课题

Calculation of stress intensity factor based on the extended finite element method

Wang Zhecheng1,Zhang Yun1*,Yu Jun2,Gong Xulong2   

  1. 1.School of Earth Sciences and Engineering,Nanjing University,Nanjing,210023,China; 2.Institute of Geological Survey of Jiangsu Province,Nanjing,210008,China;
  • Received:2019-02-25 Online:2019-06-01 Published:2019-05-31
  • Contact: Zhang Yun E-mail:zhangyun@nju.edu.cn

摘要: 应力强度因子(Stress intensity factor,SIF)是判断已有裂缝是否扩展的物理量,其计算精度对地裂缝扩展模拟具有重要影响. 基于扩展有限元的互作用积分法是一种常用的计算开裂问题应力强度因子的方法,其数值积分中的权函数通常为平台型或金字塔型,但目前对权函数的选取以及权函数对应力强度因子计算的影响研究得很少. 针对不同形式的权函数提出了统一的计算公式,并引入权函数因子来进一步控制权函数的具体形式;提出了非平台型的权函数的修正方法,以提高应力强度因子的计算精度;讨论了权函数因子以及积分区域因子对应力强度因子计算精度的影响,并通过算例进行了计算. 结果表明,当积分区域因子为3~5,采用修正的权函数且权函数因子取1~3时,应力强度因子的计算精度最高.

关键词: 扩展有限元, 互作用积分, 应力强度因子, 权函数, 权函数因子, 积分区域因子

Abstract: Stress intensity factor(SIF) is usually used in fracture simulation to determine the propagation of fissures. Its accuracy is vital to fracture simulation such as earth fissure. SIF is usually obtained by interaction integral method for its convenience and high accuracy. The weight function in the integration,namely q-function,is usually chosen as a plateau function or a ramp function. However,few attentions have been paid on the impact of different q-function shape type on the SIF. This paper presented a united formula for calculating different q-function types at nodes. A new weight function factor has been introduced to control the actual form of q-function. A modification has been made to improve the accuracy of SIF when a non-plateau q-function is used. Additionally,the effect of different q-function forms on the accuracy of SIF has been discussed,and the results show that the best integral domain factor is 3~5 and weight function factor is 1~3 with the modified weight function.

Key words: extended finite element method, interaction integral method, stress intensity factor, weight function, weight function factor, integral domain factor

中图分类号: 

  • TU44
[1] Belytschko T,Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering,1999,45(5):601-620.
[2] 黄宏伟,刘德军,薛亚东等. 基于扩展有限元的隧道衬砌裂缝开裂数值分析. 岩土工程学报,2013,35(2):266-275.(Huang H W,Liu D J,Xue Y D,et al. Numerical analysis of cracking of tunnel linings based on extended finite element. Chinese Journal of Geotechnical Engineering,2013,35(2):266-275.)
[3] 阮 滨,陈国兴,王志华. 基于扩展有限元法的均质土坝裂纹模拟. 岩土工程学报,2013,35(S2):49-54.(Ruan B,Chen G X,Wang Z H. Numerical simulation of cracks of homogeneous earth dams using an extended finite element method. Chinese Journal of Geotechnical Engineering,2013,35(S2):49-54.)
[4] Hernandez-Marin M,Burbey T J. Controls on initiation and propagation of pumping-induced earth fissures:Insights from numerical simulations. Hydrogeology Journal,2010,18(8):1773-1785.
[5] 解 勤,钱 勒,李长安. 断裂力学中的数值计算方法及工程应用. 北京:科学出版社,2009,7-19.(Xie Q,Qian L,Li C A. Numerical method and engineering application in fracture mechanics. Beijing:Science Press,2009,7-19.)
[6] Liu X Y,Xiao Q Z,Karihaloo B L. XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi-materials. International Journal for Numerical Methods in Engineering,2004,59(8):1103-1118.
[7] Yau J F,Wang S S,Corten H T. A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity. Journal of Applied Mechanics,1980,47(2):335-341.
[8] 董玉文,余天堂,任青文. 直接计算应力强度因子的扩展有限元法. 计算力学学报,2008,25(1):72-77.(Dong Y W,Yu T T,Ren Q W. Extended finite element method for direct evaluation of strength intensity factors. Chinese Journal of Computational Mechanics,2008,25(1):72-77.)
[9] Li F Z,Shih C F,Needleman A. A comparison of methods for calculating energy release rates. Engineering Fracture Mechanics,1985,21(2):405-421.
[10] Shih C F,Moran B,Nakamura T. Energy release rate along a three-dimensional crack front in a thermally stressed body. International Journal of Fracture,1986,30(2):79-102.
[11] 茹忠亮,朱传锐,张友良等. 断裂问题的扩展有限元法研究. 岩土力学,2011,32(7):2171-2176.(Ru Z L,Zhu C R,Zhang Y L,et al. Study of fracture problem with extended finite element method. Rock and Soil Mechanics,2011,32(7):2171-2176.)
[12] 丁 晶. 扩展有限元在断裂力学中的应用. 硕士学位论文. 南京:河海大学,2007.(Ding J. Application of extened finite element method to fracture mechanics. Master Dissertation. Nanjing:Hohai University,2007.)
[13] 余天堂. 扩展有限单元法-理论、应用及程序. 北京:科学出版社,2014,293.(Yu T T. Extended finite element method-theory,application and program. Beijing:Science Press,2014,293.)
[14] Stolarska M,Chopp D L,Moёs N,et al. Modelling crack growth by level sets in the extended finite element method. International Journal for Numerical Methods in Engineering,2001,51(8):943-960.
[15] Mos N,Dolbow J,Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering,1999,46(1):131-150.
[16] 茹忠亮,朱传锐,赵洪波. 基于水平集算法的扩展有限元方法研究. 工程力学,2011,28(7):20-25.(Ru Z L,Zhu C R,Zhao H B. Study on the extend finite element method based on level set algorithm. Engineering Mechanics,2011,28(7):20-25.)
[17] Mohammadi S. Extended finite element method:for fracture analysis of structures. John Wiley & Sons,2008:91-92.
[18] Rice J R. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics,1968,35(2):379-386.
[19] 范天佑. 断裂理论基础. 北京:科学出版社,2003,100-102.(Fan T Y. Fundamantal of fracture theory. Beijing:Science Press,2003,100-102.)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程永林, 李德玉, 王素格. 基于极大相容块的邻域粗糙集模型[J]. 南京大学学报(自然科学版), 2019, 55(4): 529 -536 .
[2] 李勤,陆现彩,张立虎,程永贤,刘鑫. 蒙脱石层间阳离子交换的分子模拟[J]. 南京大学学报(自然科学版), 2019, 55(6): 879 -887 .
[3] 王俞策,曹剑,陶柯宇,李二庭,向宝力,施春华. 准噶尔盆地芦草沟组致密油系统油源对比与成藏非均质性研究[J]. 南京大学学报(自然科学版), 2020, 56(3): 322 -337 .