南京大学学报(自然科学版) ›› 2020, Vol. 56 ›› Issue (3): 322–337.doi: 10.13232/j.cnki.jnju.2020.03.003

• • 上一篇    下一篇

准噶尔盆地芦草沟组致密油系统油源对比与成藏非均质性研究

王俞策1,曹剑1(),陶柯宇1,李二庭2,向宝力2,施春华1   

  1. 1.南京大学地球科学与工程学院,南京,210023
    2.中国石油新疆油田分公司,克拉玛依,834000
  • 收稿日期:2020-03-03 出版日期:2020-05-30 发布日期:2020-06-03
  • 通讯作者: 曹剑 E-mail:jcao@nju.edu.cn
  • 基金资助:
    国家自然科学基金(41830425);中国石油重大科技专项(2017E?0401)

Oil⁃source correlation and accumulation heterogeneity of tight oils in the Middle Permian Lucaogou Formation, Junggar Basin

Yuce Wang1,Jian Cao1(),Keyu Tao1,Erting Li2,Baoli Xiang2,Chunhua Shi1   

  1. 1.School of Earth Sciences and Engineering,Nanjing University,Nanjing,210023,China
    2.Research Institute of Experiment and Testing,PetroChina Xinjiang Oilfield Company, Karamay,834000,China
  • Received:2020-03-03 Online:2020-05-30 Published:2020-06-03
  • Contact: Jian Cao E-mail:jcao@nju.edu.cn

摘要:

致密油成藏的非均质性是当前致密油研究的热点与难点,为进一步深化对其的理解,以准噶尔盆地吉木萨尔凹陷中二叠统芦草沟组为例,开展了一个实例研究.结果表明,芦草沟组垂向上总体可分为上、下甜点体及其所夹的中部泥岩段.烃源岩研究发现,芦草沟组整段发育优质烃源岩,并以上下甜点体更好,主要生物母质为水生藻类,干酪根类型主要是II型,成熟演化.油源对比研究发现,芦草沟组“下甜点体”自生自储、近源聚集.相比而言,“上甜点体”除了也有近源聚集特征外,同时跨层为上覆上二叠统梧桐沟组提供油源.而中部泥岩段所生原油主要运移至“上甜点体”成藏.故芦草沟组的成藏从下到上依次为近源聚集、纵向运移、近源聚集以及纵向运移,表现出强烈的非均质性,这可能是陆相致密油聚集的普遍特征,在勘探开发中需加以关注,从页岩油?致密油?常规油全含油气系统的角度考虑.这些认识可应用于区域下一步油气勘探部署中.

关键词: 致密油, 页岩油, 成藏非均质性, 全含油气系统, 咸化湖盆, 芦草沟组, 准噶尔盆地

Abstract:

The heterogeneity of accumulation is highlighted and challenging in the study of tight oil systems. To improve the understanding of ths issue,this study conductes a case study in the middle Permian Lucaogou Formation of the Jimusar sag,Junggar basin. Results show that the Lucaogou Formation can be divided into three sections,i.e.,the Upper sweet spots,the Lower sweet spots,and the middle section mudstones intervening the two sweet spots. Orgnic rich source rock are developed not only in the two sweet spots but also in the entire middle section mudstones. Kerogen is primarily Type II with the contribution of auqtic alage. Thermal maturity is moderate. Oil?source correlation reveals the source rocks and reservoirs have similar geochemical characteristics in the lower sweet spots,reflecting a proximal hydrocarbon accumulation pattern (near?source accumulation). In contrast,the hydrocarbons generated in the upper sweet spots are not only preserved in the upper sweet spots internally but also migrated to the overlying upper Permian Wutonggou Formation reservoirs. Oils generated in the middle section mudstones also migrated to the high?quality reservoirs in the upper sweet spots. As such,the tight oil accumulation is complex in the study area. From base to top,the accumulation patterns in the Lucaogou Formation were near?source accumulation,vertical migration and accumulation,near?source accumulation,and vertical migration and accumulation,thereby showing strong heterogeneities. Our data suggest that these processes and patterns might be typical of tight oil accumulations universally,especiall in lacustrine systems. The exploration and study should be extended to the totoal petroleum systems including shale oil,tight oil and conventiaonl oil. In addition,the results will provide significant guidance for future exploration and exploitation in the region.

Key words: tight oil, shale oil, heterogeneous hydrocarbon acumulation, total petroleum systems, brackish lacustrine basin, Lucaogou Formation, Junggar Basin

中图分类号: 

  • P59

图1

吉木萨尔凹陷构造位置及井位概况图(A)吉木萨尔凹陷在准噶尔盆地中的位置;(B)吉木萨尔凹陷井位分布厚度图"

图2

吉木萨尔凹陷地层与构造基本格架地震剖面P2j=二叠系井井子组,P2l=二叠系芦草沟组,P3wt=二叠系梧桐沟组,J1b=侏罗系八道湾组,K1tg=白垩系吐谷鲁群,E=古近系.剖面位置参见图1B"

图3

吉木萨尔凹陷芦草沟组综合柱状图(吉174井)CALI=井径,GR=伽马射线,SP=自然电位,DEN=密度,AC=声波时差,RT=地层电阻率,RI=侵入带电阻率,P2l11=下芦草沟组上段,P2l12=下芦草沟组下段,P2l21=上芦草沟组上段,P2l22=上芦草沟组下段"

图4

吉174井芦草沟组地球化学特征综合柱状图(A)总有机碳含量与深度关系;(B)生烃潜力与深度关系;(C)最高热解温度与深度关系;(D)氢指数与深度关系;(E)镜质体反射率与深度关系;(F)碳同位素与深度关系"

表1

芦草沟组烃源岩基础及同位素地球化学特征"

地球化学特征范围

芦草沟组

(98个)

上甜点体

(35个)

中部泥岩段上段(25个)中部泥岩段下段(16个)

下甜点体

(22个)

TOC

(%)

Min0.270.270.430.360.35
Max13.913.912.317.938.42
Ave3.644.363.192.73.86

PG=S1+S2

(mg HC·g-1 Rock)

Min0.150.150.820.740.48
Max176.65176.6549.7145.8349.63
Ave18.3227.6414.389.3116.63

Tmax

(℃)

Min436439443438436
Max455454455450452
Ave447.31447.27450.04446445.23

HI

(mg HC·g-1 TOC)

Min35.935.971.9589.4785.45
Max1417.071417.07798.51563.18568.76
Ave334.32389.17373.76232.59288.69

Ro

(%)

Min0.780.780.790.860.86
Max0.950.880.880.910.95
Ave0.870.840.850.890.90

碳同位素

(‰)

Min-34.04-33.69-34.04-31.76-31.19
Max-29.28-30.54-29.28-30.42-30.17
Ave-31.55-31.55-32.56-31.13-30.69

表2

原油物性及族组分组成特征"

井号层位区域

样品深度段

(m)

密度

(g·cm-3)

含蜡量(%)饱和烃(%)芳香烃(%)非烃(%)沥青质(%)
吉174P2l1下甜点体3255.00~3314.000.92224.7748.1117.3030.823.77
吉251P2l13960.00~4976.000.89383.5054.8018.1523.293.76
吉36P2l14391.00~5547.000.90713.6055.9816.7721.265.99
吉23P2l2上甜点体东南凹陷区2309.00~2385.000.883822.9780.9813.264.321.44
吉301P2l22773.50~2776.500.880312.4069.0114.3313.663.00
吉37P2l22830.00~2849.000.896515.1066.1413.6118.032.22
吉174P2l2上甜点体中心沉积区3116.00~3146.000.878813.1065.4718.7514.591.19
吉172P2l23133.00~4360.000.892614.9564.8814.2120.110.80
吉171P2l23074.00~3102.500.89348.3162.5018.6115.833.05
吉002P3wt梧桐沟组1591.00~1601.000.92243.5651.8520.2325.931.99
吉003P3wt1559.00~1605.000.94347.9442.6924.2730.992.05
吉014P3wt1724.00~1736.000.91817.3053.0220.1324.832.02

图5

吉174井烃源岩抽提物生物标志化合物色谱和色质谱图"

图6

吉174井芦草沟组有机质来源与沉积环境判识(A) Pr/nC17与Ph/nC18关系;(B) Pr/Ph与伽马蜡烷指数关系"

图7

吉174井芦草沟组烃源岩样品萜烷类化合物关系图(A) C22/ C21三环萜烷比值和C24/C23三环萜烷比值相关关系;(B) C31R/C30藿烷与C26/C25三环萜烷相关关系;(C) C20/C21三环萜烷比值与C21/C23三环萜烷比值相关关系;(D) C24Tet/C26TT与C20/C21三环萜烷比值相关关系"

图8

吉174井烃源岩甾烷类化合物特征(A) αααC27?C2920R甾烷三元图;(B) 甾烷成熟度关系"

图9

油源对比地球化学分析(A) 姥植比与碳同位素相关关系;(B) 姥植比与伽马蜡烷指数相关关系;(C)萜烷类化合物相关关系;(D)甾烷类化合物相关关系"

图10

吉木萨尔凹陷芦草沟组致密油成藏模式"

1 Jarvie D M,Hill R J,Ruble T E,et al. Unconventional shale?gas systems:the Mississippian Barnett Shale of north?central Texas as one model for thermogenic shale?gas assessment. AAPG Bulletin,2007,91(4):475-499.
2 邹才能,朱如凯,吴松涛等. 常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例. 石油学报,2012,33(2):173-187.
Zou C N,Zhu R K,Wu S T,et al. Types,characteristics,genesis and prospects of conventional and unconventional hydrocarbon accumulations:taking tight oil and tight gas in China as an instance. Acta Petrolei Sinica,2012,33(2):173-187.
3 邹才能. 非常规油气地质. 北京:地质出版社,2014,1-463.
4 Meissner F F. Petroleum geology of the Bakken Formation Williston Basin,North Dakota and Montana∥Demaison G,Murris R J. Petroleum Geochemistry and Basin Evaluation. Tulsa,OK,USA:American Association of Petroleum Geologists,1991,303:19-42.
5 Schmoker J W,Hester T C. Organic carbon in Bakken formation,United States portion of Williston basin. AAPG Bulletin,1983,67(12):2165-2174.
6 Mullen J. Petrophysical characterization of the Eagle Ford Shale in south Texas∥Canadian Unconventional Resources and International Petroleum Conference. Calgary,Canada:Society of Petroleum Engineers,2010.
7 Zhang L Y,Bao Y S,Li J Y,et al. Movability of lacustrine shale oil:a case study of Dongying Sag,Jiyang Depression,Bohai Bay Basin. Petroleum Exploration and Development,2014,41(6):703-711.
8 Cao Z,Liu G L,Kong Y H,et al. Lacustrine tight oil accumulation characteristics:permian Lucaogou Formation in Jimusaer Sag,Junggar Basin. International Journal of Coal Geology,2016,153:37-51.
9 Yao J L,Deng X Q,Zhao Y D,et al. Characteristics of tight oil in Triassic Yanchang formation,Ordos Basin. Petroleum Exploration and Development,2013,40(2):161-169.
10 匡立春,唐勇,雷德文等. 准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力. 石油勘探与开发,2012,39(6):657-667.
Kuang L C,Tang Y,Lei D W,et al. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock,Junggar Basin,NW China. Petroleum Exploration & Development,2012,39(6):657-667.
11 Cao Z,Liu G D,Xiang B L,et al. Geochemical characteristics of crude oil from a tight oil reservoir in the Lucaogou Formation,Jimusar sag,Junggar Basin. AAPG Bulletin,2017,101(1):39-72.
12 Qiu Z,Tao H F,Zou C N,et al. Lithofacies and organic geochemistry of the Middle Permian Lucaogou Formation in the Jimusar Sag of the Junggar Basin,NW China. Journal of Petroleum Science and Engineering,2016,140:97-107.
13 斯春松,陈能贵,余朝丰等. 吉木萨尔凹陷二叠系芦草沟组致密油储层沉积特征. 石油实验地质,2013,35(5):529-533.
Si C S,Chen N G,Yu C F,et al. Sedimentary characteristics of tight oil reservoir in Permian Lucaogou Formation,Jimsar Sag. Petroleum Geology and Experiment,2013,35(5):529-533.
14 Hu T,Pang X,Wang X,et al. Tight oil play characterisation:the lower?middle Permian Lucaogou Formation in the Jimusar Sag,Junggar Basin,Northwest China. Fuel,2016,63(3):349-365.
15 向宝力,廖健德,周妮等. 吉木萨尔凹陷吉174井二叠系芦草沟组烃源岩地球化学特征. 科学技术与工程,2013,13(32):9636-9640.
Xiang B L,Liao J D,Zhou N,et al. Geochemical characteristic of the source rock of Lucaogou Formation in Ji174 Well,Junggar Basin. Science Technology and Engineering,2013,13(32):9636-9640.
16 Luo X R,Wang Z M,Zhang L Q,et al. Overpressure generation and evolution in a compressional tectonic setting,the southern margin of Junggar Basin,northwestern China. AAPG Bulletin,2007,91(8):1123-1139.
17 汪新伟,汪新文,马永生. 新疆博格达山的构造演化及其与油气的关系. 现代地质,2007,21(1):116-124.
Wang X W,Wang X W,Ma Y S. The Tectonic Evolution of Bogda Mountain,Xinjiang,Northwest China and its relationship to oil and gas accumulation. Geoscience,2007,21(1):116-124.
18 Graham S A,Hendrix M S,Wang L B,et al. Collisional successor basins of western China:impact of tectonic inheritance on sand composition. GSA Bulletin,1993,105(3):323-344.
19 吴晓智,何登发,杨迪生等. 准噶尔盆地陆梁隆起构造特征与油气成藏. 地质科学,2012,47(1):73-91.
Wu X Z,He D F,Yang D S,et al. Structural character and hydrocarbon accumulation in the Luliang uplift,Junggar Basin. Chinese Journal of Geology,2012,47(1):73-91.
20 宋永,周路,郭旭光等. 准噶尔盆地吉木萨尔凹陷芦草沟组湖相云质致密油储层特征与分布规律. 岩石学报,2017,33(4):1159-1170.
Song Y,Zhou L,Guo X G,et al. Characteristics and occurrence of lacustrine dolomitic tight?oil reservoir in the Middle Permian Lucaogou Formation,Jimusaer sag,southeastern Junggar Basin. Acta Petrologica Sinica,2017,33(4):1159-1170.
21 Peters K E,Moldowan J M. The biomarker guide:interpreting molecular fossils in petroleum and ancient sediments. The 2nd Edition. Cambridge:Cambridge University Press,2005,1-985.
22 Tissot B P,Welte D H. Petroleum formation and occurrence. Springer Berlin Heidelberg,1984,1-521.
23 Peters K E,Moldowan J M,Schoell M,et al. Petroleum isotopic and biomarker composition related to source rock organic matter and depositional environment. Organic Geochemistry,1986,10(1-3):17-27.
24 Peters K E,Moldowan,J M,Sundararaman P. Effects of hydrous pyrolysis on biomarker thermal maturity parameters:monterey Phosphatic and Siliceous members. Organic Geochemistry,1990,15(3):249-265.
25 Noble R A,Alexander R,Kagi R I,et al. Tetracyclic diterpenoid hydrocarbons in some Australian coals,sediments and crude oils. Geochimica et Cosmochimica Acta,1985,49(10):2141-2147.
26 Azevedo D A,Neto F R A,Simoneit B R T,et al. Novel series of tricyclic aromatic terpanes characterized in Tasmanian tasmanite. Organic Geochemistry,1992,18(1):9-16.
27 Lerch B,Karlsen D A,Matapour Z,et al. Organic geochemistry of Barents Sea Petroleum:thermal maturity and alteration and mixing processes in oils and condensates. Journal of Petroleum Geology,2016,39(2):125-148.
28 Huang W Y,Meinschein W G. Sterols as ecological indicators. Geochimica et Cosmochimica Acta,1979,43(5):739-745.
29 Grantham P J,Wakefield L L. Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological time. Organic Geochemistry,1988,12(1):61-73.
30 Rubinstein I,Sieskind O,Albrecht P. Rearranged sterenes in a shale:occurrence and simulated formation. Journal of Chemical Society,Perkin Transaction,1975(19):1833-1836. doi.org/10. 1039/P19750001833.
31 Seifert W K,Moldowan J M. The effect of thermal stress on source?rock quality as measured by hopane stereochemistry. Physics and Chemistry of the Earth,1980,12:229-237.
32 Murray A P,Summons R E,Boreham C J,et al. Biomarker and n?alkane isotope profiles for Tertiary oils:relationship to source rock depositional setting. Organic Geochemistry,1994,22(3-5):521-542.
33 Riboulleau A,Schnyder J,Riquier L,et al. Environmental change during the Early Cretaceous in the Purbeck?type Durlston Bay section (Dorset,Southern England):a biomarker approach. Organic Geochemistry,2007,38(11):1804-1823.
34 Didyk B M,Simoneit B R T,Brassell S C,et al. Organic geochemical indicators of palaeoen?vironmental conditions of sedimentation. Nature,1978,272(5650):216-222.
35 Moldowan J M,Sundararaman P,Schoell M. Sensitivity of biomarker properties to depositional environment and/or source input in the Lower Toarcian of SW?Germany. Organic Geochemistry,1986,10(4-6):915-926.
36 Abarghani A,Ostadhassan M,Gentzis T,et al. Organofacies study of the Bakken source rock in North Dakota,USA,based on organic petrology and geochemistry. International Journal of Coal Geology,2018,188:79-93.
37 French K L,Birdwell J E,Whidden K J. Geochemistry of a thermally immature Eagle Ford Group drill core in central Texas. Organic Geochemistry,2019,131:19-33.
38 Denne R A,Hinote R E,Breyer J A,et al. The Cenomanian?Turonian Eagle Ford Group of South Texas:insights on timing and paleoceanographic conditions from geochemistry and micropaleontologic analyses. Palaeogeography,Palaeoclimatology,Palaeoecology,2014,413:2-28.
39 Li Q,Wu S H,Xia D L,et al. Major and trace element geochemistry of the lacustrine organic?rich shales from the Upper Triassic Chang 7 Member in the southwestern Ordos Basin,China:implications for paleoenvironment and organic matter accumulation. Marine and Petroleum Geology,2020,111:852-867.
[1] 秦洋,姚素平,萧汉敏. 致密砂岩储层孔⁃喉连通性研究[J]. 南京大学学报(自然科学版), 2020, 56(3): 338-353.
[2] 刘显, 陈强路, 王小林, 丘靥, 杨源显. 方解石晶体定向性对水的拉曼光谱影响的实验评估[J]. 南京大学学报(自然科学版), 2020, 56(3): 297-307.
[3] 游杰, 胡广, 张玺华, 沈安江, 彭瀚霖, 田兴旺, 赵东方. 微生物碳酸盐岩同生⁃早成岩阶段有机质降解示踪:以四川盆地灯影组四段为例[J]. 南京大学学报(自然科学版), 2020, 56(3): 308-321.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 卢 毅,于 军,龚绪龙,王宝军,魏广庆,季峻峰. 基于DFOS的连云港第四纪地层地面沉降监测分析[J]. 南京大学学报(自然科学版), 2018, 54(6): 1114 -1123 .
[2] 洪思思,曹辰捷,王 喆*,李冬冬. 基于矩阵的AdaBoost多视角学习[J]. 南京大学学报(自然科学版), 2018, 54(6): 1152 -1160 .
[3] 魏 桐,童向荣. 基于加权启发式搜索的鲁棒性信任路径生成[J]. 南京大学学报(自然科学版), 2018, 54(6): 1161 -1170 .
[4] 王哲成,张 云,于 军,龚绪龙. 基于扩展有限元的应力强度因子计算精度研究[J]. 南京大学学报(自然科学版), 2019, 55(3): 361 -369 .
[5] 杨建民,于佳卉,霍王文. 区域性地面沉降形状参数c1与c2间线性关系研究[J]. 南京大学学报(自然科学版), 2019, 55(3): 420 -428 .
[6] 毛 磊,张 岩,刘明遥,龚绪龙,于 军,叶淑君. 江苏沿海地区地面沉降约束下的地下水可采资源量评价[J]. 南京大学学报(自然科学版), 2019, 55(3): 429 -439 .
[7] 董越男,吴兵党. 铁离子对紫外/乙酰丙酮法降解甲基橙的影响[J]. 南京大学学报(自然科学版), 2019, 55(3): 504 -510 .
[8] 姚宁, 苗夺谦, 张远健, 康向平. 属性的变化对于流图的影响[J]. 南京大学学报(自然科学版), 2019, 55(4): 519 -528 .
[9] 龙柄翰, 徐伟华. 模糊三支概念分析与模糊三支概念格[J]. 南京大学学报(自然科学版), 2019, 55(4): 537 -545 .
[10] 徐扬,周文瑄,阮慧彬,孙雨,洪宇. 基于层次化表示的隐式篇章关系识别[J]. 南京大学学报(自然科学版), 2019, 55(6): 1000 -1009 .