南京大学学报(自然科学版) ›› 2021, Vol. 57 ›› Issue (3): 401–408.doi: 10.13232/j.cnki.jnju.2021.03.007

• • 上一篇    下一篇

蛋白冠的形成及其对纳米颗粒生物效应的影响概述

向芷芊, 缪爱军()   

  1. 污染控制与资源化研究国家重点实验室,南京大学环境学院,南京,210023
  • 收稿日期:2021-03-23 出版日期:2021-06-08 发布日期:2021-06-08
  • 通讯作者: 缪爱军 E-mail:miaoaj@nju.edu.cn
  • 作者简介:E⁃mail:miaoaj@nju.edu.cn
  • 基金资助:
    国家自然科学基金(21822605)

Formation of protein corona and their influence on the biological effects of nanoparticles: A review

Zhiqian Xiang, Aijun Miao()   

  1. State Key Laboratory of Pollution Control and Resource Reuse,School of the Environment, Nanjing University,Nanjing,210023,China
  • Received:2021-03-23 Online:2021-06-08 Published:2021-06-08
  • Contact: Aijun Miao E-mail:miaoaj@nju.edu.cn

摘要:

纳米颗粒被广泛应用于社会生活的各个领域,其生物效应亟须研究.一旦纳米颗粒与生物体液接触,其表面会迅速吸附一层蛋白质分子(蛋白冠),从而使得纳米颗粒具有了新的生物学特性.不同于体外环境,含有蛋白冠的纳米颗粒才是它们在生物体内的真实状态.纳米颗粒的理化特性(例如粒径、形状、表面修饰等)可以影响蛋白冠的组成.与此同时,外界环境条件(例如培养基组成、培养时间、温度、pH等)也是影响蛋白冠组成的重要因素.蛋白冠的存在会影响纳米颗粒和生物体间的相互作用,改变纳米颗粒的生物吸收、生物分布以及生物毒性.尽管如此,不同蛋白质分子与纳米颗粒表面特异性结合的内在机制目前尚不清楚,同时生物体内蛋白冠?纳米颗粒复合体的动态变化研究手段还较少,这些都是未来需要解决的问题.

关键词: 纳米颗粒, 蛋白冠, 影响因素, 生物吸收, 毒性

Abstract:

Nanoparticles (NPs) have been widely used in different fields. Once NPs get in touch with organisms,a layer of protein molecules,called protein corona,will form on the NP surface quickly and NPs thus acquire new biological characteristics. Unlike the in vitro environment,the corona?containing structure is a real state of NPs in vivo. The physicochemical properties of NPs (e.g.,size,shape,and surface modification) will affect the composition of protein corona. Environmental conditions (e.g.,medium composition,incubation time,temperature,and pH) also play important roles in the formation of protein corona. On the other hand,the protein corona can affect the interactions between NPs and organisms,thus altering their biouptake,bio?distribution,and toxicity. Nevertheless,how different protein molecules specifically bind to the surface of nanoparticles is still unclear and methods to trace the dynamic changes of protein?NPs complex in living organisms are lacking. These are problems that need to be solved in the future.

Key words: nanoparticles, protein corona, affecting factors, biouptake, toxicity

中图分类号: 

  • X171
1 Capjak I,Goreta S ?,Jura?in D D,et al. How protein coronas determine the fate of engineered nanoparticles in biological environment. Archives of Industrial Hygiene and Toxicology,2017,68 (4):245-253.
2 Dykman L,Khlebtsov N. Gold nanoparticles in biomedical applications:Recent advances and perspectives. Chemical Society Reviews,2012,41 (6):2256-2282.
3 Elechalawar C K,Hossen M N,McNally L,et al. Analysing the nanoparticle?protein corona for potential molecular target identification. Journal of Controlled Release,2020 (322):122-136.
4 Di Gioacchino M,Petrarca C,Gatta A,et al. Nanoparticle?based immunotherapy:State of the art and future perspectives. Expert Review of Clinical Immunology,2020,16 (5):513-525.
5 Qin M,Zhang J,Li M,et al. Proteomic analysis of intracellular protein corona of nanoparticles elucidates nano?trafficking network and nano?bio interactions. Theranostics,2020,10 (3):1213.
6 Liu J,Peng Q. Protein?gold nanoparticle interactions and their possible impact on biomedical applications. Acta Biomaterialia,2017 (55):13-27.
7 Abdelhamid H N,Wu H F. Proteomics analysis of the mode of antibacterial action of nanoparticles and their interactions with proteins. TrAC Trends in Analytical Chemistry,2015 (65):30-46.
8 Ahsan S M,Rao C M,Ahmad M F. Nanoparticle?protein interaction:The significance and role of protein corona. Cellular and Molecular Toxicology of Nanoparticles,2018:175-198.
9 Walkey C D,Olsen J B,Song F,et al. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano,2014,8 (3):2439-2455.
10 Saha K,Rahimi M,Yazdani M,et al. Regulation of macrophage recognition through the interplay of nanoparticle surface functionality and protein corona. ACS Nano,2016,10 (4):4421-4430.
11 Chen D,Ganesh S,Wang W,et al. Plasma protein adsorption and biological identity of systemically administered nanoparticles. Nanomedicine,2017,12 (17):2113-2135.
12 Jansch M,Stumpf P,Graf C,et al. Adsorption kinetics of plasma proteins on ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. International Journal of Pharmaceutics,2012,428 (1-2):125-133.
13 Gunawan C,Lim M,Marquis C P,et al. Nanoparticle?protein corona complexes govern the biological fates and functions of nanoparticles. Journal of Materials Chemistry B,2014,2 (15):2060-2083.
14 Strojan K,Leonardi A,Bregar V B,et al. Dispersion of nanoparticles in different media importantly determines the composition of their protein corona. PLoS one,2017,12 (1):e0169552.
15 Xiao W,Gao H. The impact of protein corona on the behavior and targeting capability of nanoparticle?based delivery system. International Journal of Pharmaceutics,2018,552 (1-2):328-339.
16 Jain P,Pawar R S,Pandey R S,et al. In?vitro in?vivo correlation (IVIVC) in nanomedicine:Is protein corona the missing link?Biotechnology Advances,2017,35 (7):889-904.
17 Piella J,Bastús N G,Puntes V. Size?dependent protein?nanoparticle interactions in citrate?stabilized gold nanoparticles:The emergence of the protein corona. Bioconjugate Chemistry,2017,28 (1):88-97.
18 Perevedentseva E,Cai P J,Chiu Y C,et al. Characterizing protein activities on the lysozyme and nanodiamond complex prepared for bio applications. Langmuir,2011,27 (3):1085-1091.
19 Falahati M,Attar F,Sharifi M,et al. A health concern regarding the protein corona,aggregation and disaggregation. Biochimica et Biophysica Acta:General Subjects,2019,1863 (5):971-991.
20 Yin M M,Dong P,Chen W Q,et al. Thermodynamics and mechanisms of the interactions between ultrasmall fluorescent gold nanoclusters and human serum albumin,γ?globulins,and transferrin:A spectroscopic approach. Langmuir,2017,33( 21):5108-5116.
21 Zhang H,Peng J,Li X,et al. A nano?bio interfacial protein corona on silica nanoparticle. Colloids and Surfaces B:Biointerfaces,2018 (167):220-228.
22 M Visalakshan R,García L E G,Benzigar M R,et al. The influence of nanoparticle shape on protein corona formation. Small,2020,16 (25):2000285.
23 KantiáNandi C. Effect of surface chemistry and morphology of gold nanoparticle on the structure and activity of common blood proteins. New Journal of Chemistry,2016,40 (6):4879-4883.
24 García?álvarez R,Hadjidemetriou M,Sánchez?Iglesias A,et al. In vivo formation of protein corona on gold nanoparticles. The effect of their size and shape. Nanoscale,2018,10 (3):1256-1264.
25 Liu N,Tang M,Ding J. The interaction between nanoparticles?protein corona complex and cells and its toxic effect on cells. Chemosphere,2020 (245):125624.
26 Lai W,Wang Q,Li L,et al. Interaction of gold and silver nanoparticles with human plasma:Analysis of protein corona reveals specific binding patterns. Colloids and Surfaces B:Biointerfaces,2017 (152):317-325.
27 Sakulkhu U,Mahmoudi M,Maurizi L,et al. Significance of surface charge and shell material of superparamagnetic iron oxide nanoparticle (SPION) based core/shell nanoparticles on the composition of the protein corona. Biomaterials Science,2015,3 (2):265-278.
28 Breznica P,Koliqi R,Daka A. A review of the current understanding of nanoparticles protein corona composition. Medicine and Pharmacy Reports,2020,93 (4):342.
29 Aggarwal P,Hall J B,McLeland C B,et al. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution,biocompatibility and therapeutic efficacy. Advanced Drug Delivery Reviews,2009,61 (6):428-437.
30 Pelaz B,Pino P D,Maffre P,et al. Surface functionalization of nanoparticles with polyethylene glycol:Effects on protein adsorption and cellular uptake. ACS Nano,2015,9 (7):6996.
31 Maiorano G,Sabella S,Sorce B,et al. Effects of cell culture media on the dynamic formation of protein?nanoparticle complexes and influence on the cellular response. ACS Nano,2010,4 (12):7481-7491.
32 Casals E,Pfaller T,Duschl A,et al. Time evolution of the nanoparticle protein corona. ACS Nano,2010,4 (7):3623-3632.
33 Casals E,Pfaller T,Duschl A,et al. Hardening of the nanoparticle?protein corona in metal (Au,Ag) and oxide (Fe3O4,CoO,and CeO2) nanoparticles. Small,2011,7 (24):3479-3486.
34 Hadjidemetriou M,Al?Ahmady Z,Kostarelos K. Time?evolution of in vivo protein corona onto blood?circulating PEGylated liposomal doxorubicin (DOXIL) nanoparticles. Nanoscale,2016,8 (13):6948-6957.
35 Pisani C,Gaillard J C,Odorico M,et al. The timeline of corona formation around silica nanocarriers highlights the role of the protein interactome. Nanoscale,2017,9 (5):1840-1851.
36 Rampado R,Crotti S,Caliceti P,et al. Recent advances in understanding the protein corona of nanoparticles and in the formulation of "Stealthy" Nanomaterials. Frontiers in Bioengineering and Biotechnology,2020 (8):166.
37 Nguyen V H,Lee B J. Protein corona:A new approach for nanomedicine design. International Journal of Nanomedicine,2017 (12):3137.
38 Bhogale A,Patel N,Mariam J,et al. Comprehensive studies on the interaction of copper nanoparticles with bovine serum albumin using various spectroscopies. Colloids and Surfaces B:Biointerfaces,2014 (113):276-284.
39 Mahmoudi M,Abdelmonem A M,Behzadi S,et al. Temperature:The "ignored" factor at the nanobio interface. ACS Nano,2013,7 (8):6555-6562.
40 Lesniak A,Campbell A,Monopoli M P,et al. Serum heat inactivation affects protein corona composition and nanoparticle uptake. Biomaterials,2010,31 (36):9511-9518.
41 Curtis C,Toghani D,Wong B,et al. Colloidal stability as a determinant of nanoparticle behavior in the brain. Colloids and Surfaces B:Biointerfaces,2018 (170):673-682.
42 Pinals R L,Chio L,Ledesma F,et al. Engineering at the nano?bio interface:Harnessing the protein corona towards nanoparticle design and function. Analyst,2020,145 (15):5090-5112.
43 Tonigold M,Simon J,Estupi?án D,et al. Pre?adsorption of antibodies enables targeting of nanocarriers despite a biomolecular corona. Nature Nanotechnology,2018,13 (9):862-869.
44 Naidu P S R,Denham E,Bartlett C A,et al. Protein corona formation moderates the release kinetics of ion channel antagonists from transferrin?functionalized polymeric nanoparticles. RSC Advances,2020,10 (5):2856-2869.
45 Forest V,Pourchez J. Preferential binding of positive nanoparticles on cell membranes is due to electrostatic interactions:A too simplistic explanation that does not take into account the nanoparticle protein corona. Materials Science and Engineering:C,2017 (70):889-896.
46 Ovais M,Nethi S K,Ullah S,et al. Recent advances in the analysis of nanoparticle?protein coronas. Nanomedicine,2020,15 (10):1037-1061.
47 Lesniak A,Fenaroli F,Monopoli M P,et al. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano,2012,6 (7):5845-5857.
48 Smith P J,Giroud M,Wiggins H L,et al. Cellular entry of nanoparticles via serum sensitive clathrin?mediated endocytosis,and plasma membrane permeabilization. International Journal of Nanomedicine,2012 (7):2045-2055.
49 Qiu Y,Liu Y,Wang L,et al. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials,2010,31 (30):7606-7619.
50 Yallapu M M,Chauhan N,Othman S F,et al. Implications of protein corona on physico?chemical and biological properties of magnetic nanoparticles. Biomaterials,2015 (46):1-12.
51 Stepien G,Moros M,Pérez?Hernández M,et al. Effect of surface chemistry and associated protein corona on the long?term biodegradation of iron oxide nanoparticles in vivo. ACS Applied Materials & Interfaces,2018,10 (5):4548-4560.
52 Corbo C,Molinaro R,Tabatabaei M,et al. Personalized protein corona on nanoparticles and its clinical implications. Biomaterials Science,2017,5 (3):378-387.
53 Lee Y K,Choi E J,Webster T J,et al. Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity. International Journal of Nanomedicine,2015 (10):97-113.
54 Wang F,Yu L,Monopoli M P,et al. The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomedicine:Nanotechnology,Biology and Medicine,2013,9 (8):1159-1168.
55 Clift M J D,Bhattacharjee S,Brown D M,et al. The effects of serum on the toxicity of manufactured nanoparticles. Toxicology Letters,2010,198 (3):358-365.
56 Tedja R,Lim M,Amal R,et al. Effects of serum adsorption on cellular uptake profile and consequent impact of titanium dioxide nanoparticles on human lung cell lines. ACS Nano,2012,6 (5):4083-4093.
57 Chong Y,Ge C,Yang Z,et al. Reduced cytotoxicity of graphene nanosheets mediated by blood?protein coating. ACS Nano,2015,9 (6):5713-5724.
58 Ma Z,Bai J,Jiang X. Monitoring of the enzymatic degradation of protein corona and evaluating the accompanying cytotoxicity of nanoparticles. ACS Applied Materials & Interfaces,2015,7 (32):17614-17622.
59 Kong H,Xia K,Ren N,et al. Serum protein corona?responsive autophagy tuning in cells. Nanoscale,2018,10 (37):18055-18063.
60 Li Y,Wang P,Hu C,et al. Protein corona of airborne nanoscale PM2.5 induces aberrant proliferation of human lung fibroblasts based on a 3D organotypic culture. Scientific Reports,2018,8 (1):1939.
61 Deng Z J,Liang M,Monteiro M,et al. Nanoparticle?induced unfolding of fibrinogen promotes Mac?1 receptor activation and inflammation. Nature Nanotechnology,2011,6 (1):39-44.
[1] 杨志东, 罗冉, 徐红霞, 吴吉春. 人工纳米颗粒在饱和石英砂介质中的运移行为[J]. 南京大学学报(自然科学版), 2021, 57(3): 409-416.
[2] 王智志,陈玲,张徐祥,吴兵. 砷和二氯乙酰胺对HepG2细胞的联合暴露毒性效应[J]. 南京大学学报(自然科学版), 2020, 56(5): 719-728.
[3] 张羽西,缪爱军. 微塑料对人体健康的影响概述[J]. 南京大学学报(自然科学版), 2020, 56(5): 729-736.
[4] 刘瑞红,王晖,陶农建. 电位调制下单纳米颗粒的等离激元成像研究[J]. 南京大学学报(自然科学版), 2019, 55(5): 813-818.
[5]  陆雅婕,吴 笛,尹 颖*,郭红岩.  重金属和溴代阻燃剂复合污染对小白菜的生物效应[J]. 南京大学学报(自然科学版), 2018, 54(1): 196-.
[6] 万丽娟1,2,杨 明3*. 高效光催化转化CO2为CH4的纳米Zn2GeO4的简易合成[J]. 南京大学学报(自然科学版), 2017, 53(3): 610-.
[7] 张耀丹, 邱琳琳, 杜文超, 尹 颖, 郭红岩. 土壤环境基准的研究现状及展望[J]. 南京大学学报(自然科学版), 2017, 53(2): 209-.
[8]  李 永1,2,王 菲1,刘 颖1,茅丹俊1,何 欢1,杨绍贵1,孙 成1*. 长三角土壤对结晶紫的吸附研究[J]. 南京大学学报(自然科学版), 2017, 53(2): 245-.
[9] 谭凌艳,杨柳燕,缪爱军*. 人工纳米颗粒对重金属在水生生物中的富集与毒性研究进展[J]. 南京大学学报(自然科学版), 2016, 52(4): 582-.
[10] 张淑娟,周丽霞,潘丙才. 碳纳米管在水溶液中的聚集和沉降行为研究[J]. 南京大学学报(自然科学版), 2014, 50(4): 405-.
[11] 胡茂杰 潘丙才 毛亮*. 石墨烯及其衍生物在小鼠体内的分布与毒性效应[J]. 南京大学学报(自然科学版), 2014, 50(4): 431-.
[12]  孙曙光,尹颖,郭红岩**
.  大气CO2浓度升高对砷污染水体生态风险的影响*[J]. 南京大学学报(自然科学版), 2013, 49(3): 387-393.
[13]  徐九华**,张国瑞,魏浩,林龙华,吴晓贵
.  脉状金矿床的成矿压力与深度:流体包裹体
方法及其影响因素*
[J]. 南京大学学报(自然科学版), 2012, 48(3): 266-277.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!