南京大学学报(自然科学版) ›› 2021, Vol. 57 ›› Issue (3): 393–402.doi: 10.13232/j.cnki.jnju.2021.03.006

• • 上一篇    下一篇

野外农田系统中聚乙烯微塑料对土壤⁃小麦系统的影响

马文倩, 许美玲, 郭红岩()   

  1. 污染控制与资源化研究国家重点实验室,南京大学环境学院,南京,210023
  • 收稿日期:2021-03-09 出版日期:2021-06-08 发布日期:2021-06-08
  • 通讯作者: 郭红岩 E-mail:hyguo@nju.edu.cn
  • 作者简介:E⁃mail:hyguo@nju.edu.cn
  • 基金资助:
    国家自然科学基金国际(地区)合作与交流项目(41571130061)

Effect of polyethylene microplastic on soil⁃wheat system in field

Wenqian Ma, Meiling Xu, Hongyan Guo()   

  1. State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing,210023, China
  • Received:2021-03-09 Online:2021-06-08 Published:2021-06-08
  • Contact: Hongyan Guo E-mail:hyguo@nju.edu.cn

摘要:

塑料制品的大量生产和广泛应用导致土壤的微塑料(粒径小于5 mm)污染日益严重.采用野外lysimeter系统开展了为期半年的实验,研究野外实际环境中聚乙烯微塑料对土壤理化性质、小麦生长和土壤微生物群落的影响.结果表明,147和782 mg·kg-1聚乙烯微塑料暴露对小麦秸秆和籽粒生物量、土壤微生物群落的多样性和结构组成均无显著改变,但是却显著影响土壤理化性质,包括降低土壤有机质、阳离子交换量、总磷和有效磷含量,增加土壤微团聚体比例,其中147 mg·kg-1聚乙烯微塑料显著降低土壤磷酸酶活性.相关性分析结果显示土壤养分指标与丰度微生物具有显著相关性,其中与土壤有效磷具有正相关关系的微生物占比最多,表明聚乙烯微塑料可能影响土壤中参与磷代谢的微生物,改变土壤磷酸酶活性,进而影响土壤中的磷循环.

关键词: 微塑料, 土壤微生物, 有效磷, 相关性分析

Abstract:

The mass production and wide application of plastic products have led to dramatically serious pollution from soil microplastic (with a size less than 5 mm). To investigate the effects of polyethylene microplastic on soil physiochemical properties,wheat growth and soil bacterial community,a half?year lysimeter experiment was performed. The results showed that 147 and 782 mg·kg-1 polyethylene microplastic did not affect wheat shoot and grain biomass,diversity and community srtucture of soil bacteria,but significantly changed soil physiochemical properties,including decreases in soil organic matter,cation exchange capacity,total phosphorus and available phosphorus,and increases in soil micro?aggreagtes. Moreover,147 mg·kg-1 polyethylene microplastic significantly caused adverse effect on soil phosphatase activity. Spearman's correlation analysis showed that the significant correlation existed between soil nutrient indexes and bacterial community. Eight microbes positively correlated with soil available phosphorus which accounted for the largest proportion,indicating that polyethylene microplastic may affect soil microbes involved in phosphorus metabolism,thus change soill phosphatase activity,finally affect the phosphorus cycle in the soil.

Key words: microplastic, soil microbiome, available phosphorus, correlation analysis

中图分类号: 

  • X53

图1

空白(CK)、147 mg·kg-1微塑料(L)和782 mg·kg-1微塑料(H)处理组下小麦籽粒和秸秆的生物量Data are means of three replicates ± standard deviation.Different letters among bars indicate statistically significant difference at p≤0.05."

表1

空白(CK)、147 mg·kg-1微塑料(L)和782 mg·kg-1微塑料(H)处理对土壤化学性质的影响(0~15 cm)"

处理pHCEC (cmol·kg-1)有机质 (g·kg-1)全氮 (g·kg-1)全磷 (g·kg-1)有效磷(mg·kg-1
CK6.75±0.12 a49.69±0.19 a27.30±4.87 a0.68±0.11 a1.03±0.07 a34.53±1.23 a
L6.63±0.15 a48.41±0.20 b18.05±0.58 b0.54±0.04 a0.87±0.09 b26.75±0.20 b
H6.77±0.02 a45.94±4.74 ab17.54±0.66 b0.54±0.07 a0.82±0.06 b21.39±0.38 c

图2

空白(CK)、147 mg·kg-1微塑料(L)和782 mg·kg-1微塑料(H)处理组下酸性、中性和碱性磷酸酶活性Data are means of three replicates ± standard deviation.Different letters among bars indicate statistically significant difference at p≤0.05."

图3

对照组、低浓度微塑料(147 mg·kg-1)和高浓度微塑料(782 mg·kg-1)处理下不同深度土层土壤结构"

表2

空白(CK)、147 mg·kg-1微塑料(L)和782 mg·kg-1微塑料(H)处理土壤样本中细菌丰富度和多样性指数"

处理Shannon指数Simpson指数Ace指数Chao指数
CK6.46±0.10a0.0069±0.0017a3203.57±109.82a3248.18±123.73a
L6.46±0.16a0.0086±0.0041a3248.95±98.34a3242.02±96.10a
H6.38±0.12a0.0093±0.0029a3172.73±92.24a3180.54±116.97a

图4

土壤养分指标(TP,AK,AP,TN,OM,TN,NH3_N,NOx_N)与不同处理组中属水平上微生物的冗余分析TP:total phosphorus,AK:available potassium,AP:available phosphorus,TN:total nitrogen,NH3_N:ammonium nitrogen,NOx_N:nitrate nitrogenlow:147 mg·kg-1 microplastic treatment,high:782 mg·kg-1 microplastic treatment."

图5

土壤养分指标与不同处理组中目水平上微生物的spearman相关性分析*表示0.01<p≤0.05,**表示0.001<p≤0.01"

1 Browne M A,Galloway T,Thompson R,et al. Microplastic:An emerging contaminant of potential concern?Integrated Environmental Assessment and Management,2007,3 (4):559-561.
2 Corradini F,Meza P,Eguiluz R,et al. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Science of the Total Environment,2019 (671):411-420.
3 Dris R,Gasperi J,Saad M,et al. Synthetic fibers in atmospheric fallout:A source of microplastics in the environment?Marine Pollution Bulletin,2016,104 (1-2):290-293.
4 Chen G L,Feng Q Y,Wang J. Mini?review of microplastics in the atmosphere and their risks to humans. Science of the Total Environment,2020 (703):135504.
5 Kasirajan S,Ngouajio M. Polyethylene and biodegradable mulches for agricultural applications:A review. Agronomy for Sustainable Development,2012,32 (2):501-529.
6 Kawecki D,Nowack B. Polymer?specific modeling of the environmental emissions of seven commodity plastics as macro? and microplastics. Environmental Science & Technology,2019,53 (16):9664-9676.
7 El Mujtar V,Mu?oz N,Prack Mc Cormick B,et al. Role and management of soil biodiversity for food security and nutrition. Where do we stand? Global Food Security,2019 (20):132-144.
8 Six J,Frey S D,Thiet R K,et al. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal,2006,70 (2):555-569.
9 Rillig M C,Ziersch L,Hempel S. Microplastic transport in soil by earthworms. Scientific Reports,2017,7 (1):1362.
10 De Souza Machado A A,Lau C W,Till J,et al. Impacts of microplastics on the soil biophysical environment. Environmental Science & Technology,2018,52 (17):9656-9665.
11 Boots B,Russell C W,Green D S. Effects of microplastics in soil ecosystems:Above and below ground. Environmental Science & Technology,2019,53 (19):11496-11506.
12 De Souza Machado A A,Lau C W,Kloas W,et al. Microplastics can change soil properties and affect plant performance. Environmental Science & Technology,2019,53 (10):6044-6052.
13 陈熹,马琼,陶宗娅等. 微塑料对小麦农艺性状及氮素利用效率的影响. 四川师范大学学报(自然科学版),2020,43(5):664-670.
Chen X,Ma Q,Tao Z Y,et al. Effects of microplastics on agronomic characters and nitrogen utilization efficiency of wheat. Journal of Sichuan Normal University (Natural Science),2020,43 (5):664-670.
14 廖苑辰,娜孜依古丽·加合甫别克,李梅等. 微塑料对小麦生长及生理生化特性的影响. 环境科学,2019,40(10):4661-4667.
Liao Y C,Jahitbek N,Li M,et al. Effects of microplastics on the growth,physiology,and biochemical characteristics of wheat (Triticum aestivum). Environmental Science,2019,40 (10):4661-4667.
15 Xu S,Ma J,Ji R,et al. Microplastics in aquatic environments:occurrence,accumulation,and biological effects. Science of the Total Environment,2020 (703):134699.
16 Liu H F,Yang X M,Liu G B,et al. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere,2017(185):907-917.
17 Kim S W,Kim D,Jeong S W,et al. Size?dependent effects of polystyrene plastic particles on the nematode Caenorhabditis elegans as related to soil physicochemical properties. Environmental Pollution,2020 (258):113740.
18 Yan Y Y,Chen Z H,Zhu F X,et al. Effect of polyvinyl chloride microplastics on bacterial community and nutrient status in two agricultural soils. Bulletin of Environmental Contamination and Toxicology,2020,DOI:10.1007/s00128-020-02900-2.
19 王秀颖,高晓飞,刘和平等. 土壤水稳性大团聚体测定方法综述. 中国水土保持科学,2011,9(3):106-113.
Wang X Y,Gao X F,Liu H P,et al. Review of analytical methods for aggregate size distribution and water?stability of soil macro?aggregates. Science of Soil and Water Conservation,2011,9 (3):106-113.
20 Zhang G S,Liu Y F. The distribution of microplastics in soil aggregate fractions in southwestern China. Science of the Total Environment,2018 (642):12-20.
21 Totsche K U,Amelung W,Gerzabek M H,et al. Microaggregates in soils. Journal of Plant Nutrition and Soil Science,2018,181 (1):104-136.
22 Tisdall J M,Oades J M. Organic matter and water?stable aggregates in soils. Journal of Soil Science,1982,33 (2):141-163.
23 Fei Y F,Huang S Y,Zhang H B,et al. Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil. Science of the Total Environment,2020 (707):135634.
24 Coenye T,Vandamme P. Diversity and significance of Burkholderia species occupying diverse ecological niches. Environmental Microbiology,2003,5 (9):719-729.
25 戴沈艳,申卫收,贺云举等. 一株高效解磷细菌的筛选及其在红壤性水稻土中的施用效果. 应用与环境生物学报,2011,17(5):678-683.
Dai S Y,Shen W S,He Y J,et al. Screening of efficient phosphate?solubilizing bacterial strain and its application in red paddy soil to rice cultivation. Chinese Journal of Applied and Environmental Biology,2011,17 (5):678-683.
26 Nie X Q,Dong W Y,Yang C. Genomic reconstruction of σ54 regulons in Clostridiales. BMC Genomics,2019,20 (1):565.
27 Guo J J,Liu W B,Zhu C,et al. Bacterial rather than fungal community composition is associated with microbial activities and nutrient?use efficiencies in a paddy soil with short?term organic amendments. Plant and Soil,2018,424 (1):335-349.
28 Zhang H,Sekiguchi Y,Hanada S,et al. Gemmatimonas aurantiaca gen. nov,sp.
nov,Gram?negative a,aerobic,micro?organism polyphosphate?accumulating,the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. International Journal of Systematic and Evolutionary Microbiology,2003,53 (4):1155-1163.
29 Kopprio G A,Neogi S B,Rashid H,et al. Vibrio and bacterial communities across a pollution gradient in the bay of bengal:Unraveling their biogeochemical drivers. Frontiers in Microbiology,2020 (11):594.
30 王金生,吴俊江,蒲国锋等. 不同土壤类型中大豆根瘤菌解磷能力及其稳定性评价. 大豆科学,2020,39(6):906-911.
Wang J S,Wu J J,Pu G F,et al. Evaluation of phosphate?solubilizing ability and stabi?lity of rhizobium fredii in various soils. Soybean Science,2020,39 (6):906-911.
31 Hua D L,Fan Q W,Zhao Y X,et al. Comparison of methanogenic potential of wood vinegar with gradient loads in batch and continuous anaerobic digestion and microbial community analysis. Science of the Total Environment,2020 (739):139943.
32 Storey S,Ashaari M M,Clipson N,et al. Opportunistic bacteria dominate the soil microbiome response to phenanthrene in a microcosm?based study. Frontiers in Microbiology,2018 (9):2815.
[1] 叶子琪, 蒋小峰, 汤其阳, 李梅. 聚乙烯微塑料对蚕豆幼苗的毒性效应[J]. 南京大学学报(自然科学版), 2021, 57(3): 385-392.
[2] 张羽西,缪爱军. 微塑料对人体健康的影响概述[J]. 南京大学学报(自然科学版), 2020, 56(5): 729-736.
[3] 左 平1,2*,欧志吉1,姜启吴1,刘 明3. 江苏盐城原生滨海湿地土壤中的微生物群落功能多样性分析[J]. 南京大学学报(自然科学版), 2014, 50(5): 715-722.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!