南京大学学报(自然科学版) ›› 2021, Vol. 57 ›› Issue (3): 409–416.doi: 10.13232/j.cnki.jnju.2021.03.008

• • 上一篇    下一篇

人工纳米颗粒在饱和石英砂介质中的运移行为

杨志东, 罗冉, 徐红霞(), 吴吉春   

  1. 表生地球化学教育部重点实验室, 南京大学地球科学与工程学院水科学系,南京,210023
  • 收稿日期:2021-02-20 出版日期:2021-06-08 发布日期:2021-06-08
  • 通讯作者: 徐红霞 E-mail:hxxu@nju.edu.cn
  • 作者简介:E⁃mail:hxxu@nju.edu.cn
  • 基金资助:
    国家自然科学基金(41730856);中央高校基本科研业务费专项资金(0206 14380106)

Transport of artificial nanoparticles in saturated sand media

Zhidong Yang, Ran Luo, Hongxia Xu(), Jichun Wu   

  1. Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
  • Received:2021-02-20 Online:2021-06-08 Published:2021-06-08
  • Contact: Hongxia Xu E-mail:hxxu@nju.edu.cn

摘要:

以生物炭为代表的人工碳材料广泛应用于环境污染的控制和修复,而其中产生的纳米级颗粒可能会迁移或携带污染物共迁移进入地下水环境而加剧污染风险.通过室内一维砂柱实验,研究离子强度(ionic strength,IS)、pH、流速和共存有机污染物(对乙酰氨基酚(acetaminophen,AP))对生物炭纳米颗粒在饱和多孔介质中运移和滞留行为的影响程度和机理.结果表明,纳米级生物炭颗粒在饱和多孔介质中的运移能力较强.生物炭和石英砂的电负性均随着IS的降低、pH的增加而增强,两者之间的静电斥力作用随之增大,造成生物炭在砂粒表面的附着减少从而促进了运移,降低了生物炭在饱和砂柱中的滞留量.流速的增加同样对生物炭的运移具有促进作用,这主要是由增强的水流剪切作用所致.此外,有机污染物AP的存在对生物炭颗粒的运移性具有抑制作用,其在石英砂介质中的滞留量随AP浓度的升高而增大.

关键词: 多孔介质, 纳米颗粒, 生物炭, 运移

Abstract:

Artificial carbonaceous materials,such as biochar,have been widely used in the environmental pollution control and remediation. During the application,nanoparticles (NPs) of these carbonaceous materials will inevitably be produced,and these particles may migrate into the subsurface eventually or even facilitate the transport of contaminants into groundwater,increasing the risk of environmental pollution. Therefore,a comprehensive understanding of the transport and retention behaviors of NPs in porous media is critical to the development of remediation technology using carbonaceous materials. In this study,laboratory saturated columns were packed with silica sand to elucidate the transport and retention behaviors of biochar NPs in saturated porous media under various physicochemical conditions,and the effect of ionic strength (IS),pH,and flow velocity was investigated. Furthermore,acetaminophen (AP),a representative non?steroidal anti?inflammatory drug that has been widely detected in the subsurface,was chosen as the model organic contaminant in this study,so as to explore the influence of co?existing organic contaminant on the transport of NPs in sand columns. The results showed that the mobility of biochar NPs was relatively high in saturated sand media. Both biochar NPs and sand became more negatively charged at decreased IS and increased pH,which would introduce stronger electrostatic repulsions between biochar NPs and sand grains. As a result,the attachment of biochar onto the sand surface was decreased and thus promoted the transport of biochar NPs,and particles were less retained in saturated sand columns. Higher mobility of biochar NPs was observed with the increase of flow velocity,mainly owing to the enhanced hydrodynamic shear. In addition,the presence of AP was found to inhibit the transport of biochar NPs,which could be attributed to the decreased electrostatic repulsions due to compression of electrical double layer,as well as masking of the negatively charged sites on particles due to AP adsorption. The deposition of biochar NPs in saturated sand media increased with increasing AP concentrations. Overall,the results from this study give insight into the transport behaviors of biochar NPs in porous media,and have implications to the prediction and assessment of the risks of NPs in the subsurface.

Key words: porous media, nanoparticles, biochar, transport

中图分类号: 

  • P641

表1

生物炭纳米颗粒在饱和石英砂柱中运移和滞留的实验条件和结果"

离子强度(mmol·L-1pH流速(mL·min-1AP浓度(mg·L-1孔隙度穿透率(%)滞留率(%)质量平衡(%)
07100.36784.912.597.4
107100.36968.632.2100.8
507100.36859.942.2102.1
05100.37259.321.380.6
09100.37090.410.9101.3
070.2500.37960.441.9102.3
070.500.38372.131.3103.4
07150.36782.318.0100.3
071100.37078.523.9102.4

表2

生物炭纳米颗粒与石英砂在不同条件下的Zeta电位"

离子强度(mmol·L-1pH

AP浓度

(mg·L-1

Zeta电位(mV)
生物炭石英砂
070-40.12-38.35
075-38.82-35.30
0710-38.75-34.80
1070-36.05-31.12
5070-35.07-27.03
050-29.98-26.90
090-41.15-40.25

图1

IS对生物炭纳米颗粒在饱和砂柱中迁移(左)和滞留(右)的影响pH=7.0,v=1.0 mL·min-1"

图2

pH对生物炭纳米颗粒在饱和砂柱中迁移(左)和滞留(右)的影响IS=0.0 mmol·L-1,v=1.0 mL·min-1"

图3

流速对生物炭纳米颗粒在饱和砂柱中迁移(左)和滞留(右)的影响IS=0.0 mmol·L-1,pH=7.0"

图4

AP的浓度对生物炭纳米颗粒在饱和砂柱中迁移(左)和滞留(右)的影响IS=0.0 mmol·L-1,pH=7.0,v=1.0 mL·min-1"

1 陈温福,张伟明,孟军. 生物炭与农业环境研究回顾与展望. 农业环境科学学报,2014,33 (5): 821-828.
Chen W F,Zhang W M,Meng J. Biochar and agro?ecological environment:Review and prospect. Journal of Agro?Environment Science,2014,33 (5): 821-828.
2 曹钢. 饱和多孔介质中球磨生物炭的迁移及与Cd的交互作用. 硕士学位论文. 杨凌:西北农林科技大学,2019.
Cao G. Transport of ball?milled biochar in saturated porous media and its interaction with Cd(Ⅱ). Master Dissertation. Yangling:Northwest A & F University,2019.
3 陈明. 生物炭纳米颗粒协同土壤中典型污染物的迁移行为. 博士学位论文. 上海:上海交通大学,2019.
Chen M. Co?Transport behaviors of biochar nanoparticles and contaminants in soils. Ph.D. Dissertation. Shanghai:Shanghai Jiao Tong University,2019.
4 杨晶晶. 竹屑生物炭吸附典型芳香性有机物的机制及规律. 硕士学位论文. 杭州:浙江大学,2016.
Yang J J. Correlations and mechanisms of typical aromatic compounds adsorption on bamboo biochars. Master Dissertation. Hangzhou: Zhejiang University,2016.
5 Nowack B,Bucheli T D. Occurrence,behavior and effects of nanoparticles in the environment. Environmental Pollution,2007,150 (1): 5-22.
6 Qu X L,Fu H Y,Mao J D,et al. Chemical and structural properties of dissolved black carbon released from biochars. Carbon,2016 (96): 759-767.
7 Rumpel C,Chaplot V,Planchon O,et al. Preferential erosion of black carbon on steep slopes with slash and burn agriculture. Catena,2006,65 (1): 30-40.
8 Guggenberger G,Rodionov A,Shibistova O,et al. Storage and mobility of black carbon in permafrost soils of the forest tundra ecotone in northern siberia. Global Change Biology,2008,14 (6): 1367-1381.
9 Zhang W,Niu J Z,Morales V L,et al. Transport and retention of biochar particles in porous media:Effect of pH,ionic strength,and particle size. Ecohydrology,2010,3 (4): 497-508.
10 李星燃,高鹏,祝妍华等. 界面化学与水力学作用下的生物炭在砂柱中的迁移特性. 环境化学,2020,39(5):1410-1419.
Li X R,Gao P,Zhu Y H,et al. Migration characteristics of biochar in sand column under the influence of interface chemistry and hydraulics. Environmental Chemistry,2020,39 (5): 1410-1419.
11 杨美红. 微纳米级生物炭迁移行为及吸附性能的研究. 硕士学位论文. 北京:中国地质大学,2019.
Yang M H. Study on transport behavior and adsorption properties of micro?nano?scale biochar. Master Dissertation. Beijing:China University of Geoscien?ces,2019.
12 杨雯,郝丹丹,徐东昊等. 生物炭颗粒在饱和多孔介质中的迁移与滞留. 土壤通报,2017,48(2):304-312.
Yang W,Hao D D,Xu D H,et al. Transport and retention of biochar particles in saturated porous media. Chinese Journal of Soil Science,2017,48 (2):304-312.
13 Ahmad M,Rajapaksha A U,Lim J E,et al. Biochar as a sorbent for contaminant management in soil and water:A review. Chemosphere,2014 (99): 19-33.
14 宋冰清. 生物炭微纳米颗粒的理化性质及其在环境中胶体稳定性研究. 硕士学位论文. 上海:上海交通大学,2019.
Song B Q. Physicochemical property and environmental stability of micron?and nano?particle biochars. Master Dissertation. Shanghai:Shanghai Jiao Tong University,2019.
15 Yang W,Wang Y,Sharma P,et al. Effect of naphthalene on transport and retention of biochar colloids through saturated porous media. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2017 (530): 146-154.
16 W?grzyn A,Stawiński W,Freitas O,et al. Study of adsorptive materials obtained by wet fine milling and acid activation of vermiculite. Applied Clay Science,2018 (155): 37-49.
17 Li X H,Xu H X,Gao B,et al. Cotransport of Herbaspirillum chlorophenolicum FA1 and heavy metals in saturated porous media:Effect of ion type and concentration. Environmental Pollution,2019 (254): 112940.
18 张盼伟,周怀东,赵高峰等. 北京城区水体中PPCPs的分布特征及潜在风险. 环境科学,2017,38(5): 1852-1862.
Zhang P W,Zhou H D,Zhao G F,et al. Potential risk and distribution characteristics of PPCPs in surface water and sediment from rivers and lakes in Beijing,China. Environmental Science,2017,38 (5): 1852-1862.
19 Fram M S,Belitz K. Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking?water supply in California. Science of the Total Environment,2011,409 (18): 3409-3417.
20 Johnson P R,Sun N,Elimelech M. Colloid transport in geochemically heterogeneous porous media:Modeling and measurements. Environmental Science & Technology,1996,30 (11): 3284-3293.
21 Rawat S,Pullagurala V L R,Adisa I O,et al. Factors affecting fate and transport of engineered nanomaterials in terrestrial environments. Current Opinion in Environmental Science & Health,2018 (6): 47-53.
22 Stumpp C,Laurence J R,Jim Hendry M,et al. Transport and bacterial interactions of three bacterial strains in saturateds column experiments. Environmental Science & Technology,2011,45 (6):2116-2123.
23 Shi L,Zhang G,Wei D,et al. Preparation and utilization of anaerobic granular sludge?based biochar for the adsorption of methylene blue from aqueous solutions. Journal of Molecular Liquids,2014 (198): 334-340.
24 Luo R,Li X H,Xu H X,et al. Effects of temperature,solution pH,and ball?milling modification on the adsorption of non?steroidal anti?inflammatory drugs onto biochar. Bulletin of Environmental Contamination and Toxicology,2020,105 (3): 422-427.
25 Bradford S A,Simunek J,Bettahar M,et al. Modeling colloid attachment,straining,and exclusion in saturated porous media. Environmental Science & Technology,2003,37 (10): 2242-2250.
26 Walshe G E,Pang L P,Flury M,et al. Effects of pH,ionic strength,dissolved organic matter,and flow rate on the co?transport of MS2 bacteriophages with kaolinite in gravel aquifer media. Water Research,2010,44 (4): 1255-1269.
27 Sasidharan S,Bradford S A,Torkzaban S,et al. Unraveling the complexities of the velocity dependency of E. coli retention and release parameters in saturated porous media. Science of the Total Environment,2017 (603-604): 406-415.
28 殷宪强,孙慧敏,易磊等. 孔隙水流速对胶体在饱和多孔介质中运移的影响. 水土保持学报,2010,24(5):101-104.
Yin X Q,Sun H M,Yi L,et al. Effect of flowrate of pore water?on the transport of colloid in saturated porous media. Journal of Soil and Water Conservation,2010,24 (5): 101-104.
[1] 向芷芊, 缪爱军. 蛋白冠的形成及其对纳米颗粒生物效应的影响概述[J]. 南京大学学报(自然科学版), 2021, 57(3): 401-408.
[2] 刘艺超, 陆玥, 徐红霞, 孙媛媛, 吴吉春. 盐度对PCE在饱水单裂隙中运移分布及质量溶出的影响[J]. 南京大学学报(自然科学版), 2021, 57(3): 426-436.
[3] 刘瑞红,王晖,陶农建. 电位调制下单纳米颗粒的等离激元成像研究[J]. 南京大学学报(自然科学版), 2019, 55(5): 813-818.
[4] 万丽娟1,2,杨 明3*. 高效光催化转化CO2为CH4的纳米Zn2GeO4的简易合成[J]. 南京大学学报(自然科学版), 2017, 53(3): 610-.
[5] 谭凌艳,杨柳燕,缪爱军*. 人工纳米颗粒对重金属在水生生物中的富集与毒性研究进展[J]. 南京大学学报(自然科学版), 2016, 52(4): 582-.
[6] 张庆泉,尹 颖*,杜文超,郭红岩 . 碱性Cd污染农田原位稳定化修复研究[J]. 南京大学学报(自然科学版), 2016, 52(4): 601-.
[7] 邓亚平,郑 菲,施小清*,徐红霞,孙媛媛,吴吉春*. 多孔介质中DNAPLs运移行为研究进展[J]. 南京大学学报(自然科学版), 2016, 52(3): 409-420.
[8]  张 弛,陈 干,吴剑锋*,施小清,吴吉春.  基于多点地质统计的二维裂隙网络溶质运移模拟[J]. 南京大学学报(自然科学版), 2016, 52(3): 456-463.
[9]  郭 芳,姜光辉*,于 奭,林玉石.  地下河不同流量状态下溶质运移的参数及模拟[J]. 南京大学学报(自然科学版), 2016, 52(3): 496-502.
[10] 姜光辉*,郭 芳,汤庆佳,李 鑫,曾莘茹.  人工示踪技术在岩溶地区水文地质勘察中的应用[J]. 南京大学学报(自然科学版), 2016, 52(3): 503-511.
[11]  黄 海, 李晓义
.  孔隙尺度下反应性溶质运移和矿物溶解过程的水平集界面追踪模拟
[J]. 南京大学学报(自然科学版), 2011, 47(3): 236-251.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!