南京大学学报(自然科学版) ›› 2019, Vol. 55 ›› Issue (5): 718–724.doi: 10.13232/j.cnki.jnju.2019.05.002

• • 上一篇    下一篇

毫米波综合孔径辐射计的压缩感知成像方法研究

张滨,张胜,陈建飞()   

  1. 南京邮电大学电子与光学工程学院,南京,210023
  • 收稿日期:2019-02-16 出版日期:2019-09-30 发布日期:2019-11-01
  • 通讯作者: 陈建飞 E-mail:718576837@qq.com
  • 基金资助:
    国家自然科学基金(61601237);江苏省自然科学基金(BK20160901)

Research on compressed sensing imaging of millimeter wavesynthetic aperture radiometer

Bin Zhang,Sheng Zhang,Jianfei Chen()   

  1. College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023,China
  • Received:2019-02-16 Online:2019-09-30 Published:2019-11-01
  • Contact: Jianfei Chen E-mail:718576837@qq.com

摘要:

毫米波综合孔径成像辐射计(Synthetic Aperture Imaging Radiometer,SAIR)是一种适用于近场成像的高分辨率、高灵敏度传感器,但因其接收机数量大、系统复杂度高,限制了SAIR在实际场景中的应用.用少量阵元天线获取的稀疏可见度函数进行高精度成像反演是目前SAIR成像研究的热点之一.为从少量的可见度采样点中重构出具有较高精度的毫米波图像,借鉴压缩感知(Compressed Sensing,CS)的稀疏重构思想,提出一种基于二维SAIR成像模型的CS?L0成像反演算法.该算法借助SL0算法思想对二维综合孔径反演模型进行快速的l0范数求解,可从少量可见度采样点中快速精确地重构出目标场景的亮温图像.实验仿真表明,与结合传统成像模型的一般CS反演法相比,提出的CS?L0反演法具有更高的成像精度和反演速度,能够对稀疏采样的SAIR进行快速准确的成像反演.

关键词: 综合孔径, 近场成像, 压缩感知, SL0算法, 图像反演

Abstract:

The millimeter?wave Synthetic Aperture Imaging Radiometer (SAIR) is a kind of imaging sensor for near field with high resolution and sensitivity,but the SAIR receivers' number is very large and the system is too complex,which affect it's application in practice. To take the advantage of the sparse visibility function to accurately reconstruct a high resolution image,which is one of the focus of research,the paper has led the CS (Compressed Sensing) into the process of SAIR sparse sampling reconstruction,and proposed a fast and accurate method that is CS?L0 inversion algorithm in a two?dimensional fast imaging model for SAIR. CS?L0 inversion algorithm references the SL0 algorithm to solve the 2?D synthetic aperture inversion model of l0?norm,which is used to efficiently reconstruct the target bright?temperature image. At last,compared with the traditional CS inversion algorithm,the experimental simulation shows that the CS?L0 algorithm can achieve image reconstruction with higher imaging accuracy and inversion speed from less visibility sparse samples.

Key words: synthetic aperture, near field imaging, compressed sensing, SL0 algorithm, imaging inversion

中图分类号: 

  • TN015

图1

综合孔径成像模型"

图2

目标场景图(airplane)"

表1

仿真模型的模拟参数"

模拟参数数值
中心波长 (mm)3
阵列维度50~90
天线口径 (m)0.9×0.9
成像距离R (m)3
点辐射源尺寸 (mm)5

图3

传统CS反演法的反演结果"

图4

CS?L0反演法的反演结果"

图5

CS?L0和CS算法的RMSE (a)和PSNR (b)的对比"

图6

CS?L0反演法和传统CS反演法的时间对比"

1 邹冉. 毫米波无源成像隐匿目标检测算法研究. 硕士学位论文. 成都:电子科技大学,2017.
ZouR. Research on hidden targets passive millimeter detection algorithm of wave imaging. Master Dissertation. Chengdu:University of Electronic Science and Technology,2017.
2 徐枫,朱莉,刘敏. 近程毫米波全息成像技术发展综述. 微波学报,2017,33(S1):289-294.
XuF,JuL,LiuM. Reviews of short range millimeter wave holographic imaging technology. Journal of Microwave,2017,33(S1):289-294.
3 张慧. 微波毫米波阵列成像关键技术研究. 博士学位论文. 南京:东南大学,2016.
ZhangH. Investigations on microwave and millimeter wave array imaging key technologies. Ph.D. Dissertation. Nanjing:Southeast University,2016.
4 王辉,赵凤军,邓云凯. 毫米波合成孔径雷达的发展及其应用. 红外与毫米波学报,2015,34(4):452-459.
WangH,ZhaoF J,DengY K. Development and application of the millimeter wave SAR. Journal of Infrared and Millimeter Wave,2015,34(4):452-459.
5 张燕洪. 毫米波主动成像在人体隐匿违禁物品检查中的应用. 硕士学位论文. 南京:南京理工大学,2015.
ZhangY H. Application of millimeter wave active imaging in detection of contraband objects in human body. Master Dissertation. Nanjing:Nanjing University of Science and Technology,2015.
6 CampsA,BaraJ,SanahujaI C,et al. The processing of hexagonally sampled signals with standard rectangular techniques:application to 2?D large aperture synthesis interferometric radiometers. IEEE Transactions on Geoscience and Remote Sensing,1997,35(1):183-190.
7 何焦. 亳米波综合孔径辐射计反演成像方法研究与实现. 博士学位论文. 成都:电子科技大学,2015.
HeJ. Research and implementation of inversion imaging method in millimeter wave synthetic aperture radiometer. Ph.D. Dissertation. Chengdu:University of Electronic Science and Technology,2015.
8 WalshK P,SchulkinB,GaryD,et al. Terahertz near?field interferometric and synthetic aperture imaging∥Proceedings of SPIE 5411,Terahertz for Military and Security Applications II. Orlando,FL,USA:SPIE,2004:9-17.
9 DonohoD L. Compressed sensing. IEEE Transac?tions on Information Theory,2006,52(4):1289-1306.
10 ChenJ F,LiY H. The CS?based imaging algorithm for near?field synthetic aperture imaging radiometer. IEICE Transactions on Electronics,2014,97(9):911-914.
11 TannerA,LambrigstenB,GaierT,et al. Near field characterization of the GeoSTAR demonstrator∥2006 IEEE International Sympo?sium on Geoscience and Remote Sensing. Denver,CO,USA:IEEE,2006:2529-2532.
12 齐焕芳,徐源浩. 用于压缩感知信号重建的SL0改进算法. 电子科技,2015,28(4):27-30.
QiH F,XuY H. Improved SL0 algorithm for compressive sensing signal reconstruction. Electronic Science and Technology,2015,28(4):27-30.
13 杨良龙,赵生妹,郑宝玉等. 基于SL0压缩感知信号重建的改进算法. 信号处理,2012,28(6):834-841.
YangL L,ZhaoS M,ZhengB Y,et al. The improved reconstruction algorithm for compressive sensing on SL0. Signal Processing,2012,28(6):834-841.
14 邵询. 基于压缩感知理论的雷达成像方法研究. 博士学位论文. 南京:南京理工大学,2018.
ShaoXun. Research on Radar Imaging method based on Compression Perceptual Theory. Ph.D. Disser?tation. Nanjing:Nanjing University of Science and Technology,2018.
15 冯俊杰,王永会. 平滑L0范数稀疏信号重构ISAR成像算法. 电脑知识与技术,2018,14(34):170-171.
FengJ J,WangY H. Smooth L0 norm sparse signal recovery ISAR imaging algorithm. Computer knowledge and Technology,2018,14(34):170-171.
16 刘孟琪. 基于平滑L0范数的稀疏分解算法的改进. 硕士学位论文. 大连:大连海事大学,2018.
LiuMengqi. An improved sparse decomposition algorithm based on smooth L0 norm. Master Dissertation. Dalian:Dalian Maritime University,2018.
[1] 杨 韧,张兴敢1*. 压缩感知重构SAMP的改进算法[J]. 南京大学学报(自然科学版), 2018, 54(3): 538-542.
[2] 田 健,王开军*,郭躬德,陈黎飞. 融合速度特征的压缩感知目标跟踪算法[J]. 南京大学学报(自然科学版), 2016, 52(1): 149-158.
[3] 吴 琼,柏业超*,张兴敢

. 基于贝叶斯压缩感知的宽带雷达回波处理[J]. 南京大学学报(自然科学版), 2015, 51(4): 665-672.
[4] 苏亮又,柏业超*,张兴敢,吴琼. 基于协方差准则迭代估计的雷达回波压缩重构[J]. 南京大学学报(自然科学版), 2015, 51(1): 31-36.
[5] 张 磊1,柏业超1*,张兴敢1. 压缩感知在宽带雷达信号处理中的应用[J]. 南京大学学报(自然科学版), 2014, 50(1): 35-.
[6]  左加阔1,包永强2,赵力1,邹采荣1,陶文凤1
.  认知水声通信中的分布式压缩频谱感知算法[J]. 南京大学学报(自然科学版), 2012, 48(5): 582-591.
[7]  谢志鹏1.2**.  基于前向后向算子分裂的稀疏信号重构*
[J]. 南京大学学报(自然科学版), 2012, 48(4): 475-481.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段新春,施 斌,孙梦雅,魏广庆,顾 凯,冯晨曦. FBG蒸发式湿度计研制及其响应特性研究[J]. 南京大学学报(自然科学版), 2018, 54(6): 1075 -1084 .
[2] 汪 勇,刘 瑾*,宋泽卓,白玉霞,王琼亚,祁长青,孙少锐. 高分子稳定剂加固河道边坡表层砂土室内试验研究[J]. 南京大学学报(自然科学版), 2018, 54(6): 1095 -1104 .
[3] 许 林,张 巍*,梁小龙,肖 瑞,曹剑秋. 岩土介质孔隙结构参数灰色关联度分析[J]. 南京大学学报(自然科学版), 2018, 54(6): 1105 -1113 .
[4] 卢 毅,于 军,龚绪龙,王宝军,魏广庆,季峻峰. 基于DFOS的连云港第四纪地层地面沉降监测分析[J]. 南京大学学报(自然科学版), 2018, 54(6): 1114 -1123 .
[5] 孙 玫,张 森,聂培尧,聂秀山. 基于朴素贝叶斯的网络查询日志session划分方法研究[J]. 南京大学学报(自然科学版), 2018, 54(6): 1132 -1140 .
[6] 胡 淼,王开军,李海超,陈黎飞. 模糊树节点的随机森林与异常点检测[J]. 南京大学学报(自然科学版), 2018, 54(6): 1141 -1151 .
[7] 魏 桐,童向荣. 基于加权启发式搜索的鲁棒性信任路径生成[J]. 南京大学学报(自然科学版), 2018, 54(6): 1161 -1170 .
[8] 周星星,张海平,吉根林. 具有时空特性的区域移动模式挖掘算法[J]. 南京大学学报(自然科学版), 2018, 54(6): 1171 -1182 .
[9] 赵天龙,刘 峥,韩慧健,张彩明. 基于二分图的个性化图像标签推荐算法[J]. 南京大学学报(自然科学版), 2018, 54(6): 1193 -1205 .
[10] 王伯伟, 聂秀山, 马林元, 尹义龙. 基于语义相似度的无监督图像哈希方法[J]. 南京大学学报(自然科学版), 2019, 55(1): 41 -48 .