南京大学学报(自然科学版) ›› 2024, Vol. 60 ›› Issue (2): 287–300.doi: 10.13232/j.cnki.jnju.2024.02.010

• • 上一篇    

河南“21.7”特大暴雨的区域集合预报检验和预报偏差分析

廉丹华1, 袁慧玲1,2(), 王婧羽1,3, 陈法敬4   

  1. 1.中尺度灾害性天气教育部重点实验室,南京大学大气科学学院,南京,210023
    2.南京大学关键地球物质循环 前沿科学中心,南京,210023
    3.中国气象局武汉暴雨研究所暴雨监测预警湖北省重点实验室,武汉,430205
    4.中国气象局地球系统数值预报中心,北京,100081
  • 收稿日期:2024-02-01 出版日期:2024-03-30 发布日期:2024-03-29
  • 通讯作者: 袁慧玲 E-mail:yuanhl@nju.edu.cn
  • 基金资助:
    国家自然科学基金(U2342218)

Verification and error analysis of regional ensemble forecasts for the torrential rain on 20 July 2021 in Henan province

Danhua Lian1, Huiling Yuan1,2(), Jingyu Wang1,3, Fajing Chen4   

  1. 1.Key Laboratory of Mesoscale Severe Weather,Ministry of Education,and School of Atmospheric Sciences,Nanjing University,Nanjing,210023,China
    2.Frontiers Science Center for Critical Earth Material Cycling,Nanjing University,210023,China
    3.Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research,Institute of Heavy Rain,China Meteorological Administration,Wuhan,430205,China
    4.CMA Earth System Modeling and Prediction Centre,Beijing,100081,China
  • Received:2024-02-01 Online:2024-03-30 Published:2024-03-29
  • Contact: Huiling Yuan E-mail:yuanhl@nju.edu.cn

摘要:

河南“21.7”特大暴雨覆盖范围广、强度大、降水时间段集中,造成了严重损失.利用中国气象局(China Meteorological Administration,CMA)多源融合降水分析产品(CMA Multisource Precipitation Analysis System,CMPAS?V2.1)和欧洲中期天气预报中心ERA5再分析数据,对CMA区域集合预报系统(Regional Ensemble Prediction System,CMA?REPS)在此次暴雨事件中降水最强时间段(2021年7月20日14-20时,北京时)的预报结果进行了评估与分析.研究结果显示,预报时效越短,集合平均和概率预报的降水效果越好,但降水强度与大值落区依然存在较大的预报偏差.结合多种降水预报评分筛选出最好和最坏的集合成员,并通过对比环流形势、水汽条件等因素,探讨了降水预报偏差的成因.好成员在郑州地区预测了占总降水30%的对流性降水,而坏成员则未能预报出对流性降水,两者总降水的偏移与非对流性降水的表现一致.好成员预测的降水区域偏向东北,与预报的副高位置偏东、台风“查帕卡”路径偏北以及南风偏强有关;坏成员预测的降水区域偏西,与相对湿度的大值区偏移一致,可能是因为预报的台风“烟花”引导的低层东风更强.在925 hPa上,好成员成功预测出郑州西部山脉迎风侧的强辐合区,导致超过25 mm·(6 h)-1的强降水从山前延伸至地形高度800 m以上的迎风坡.相比之下,由于预报的辐合区域小、强度弱,坏成员的强降水仅分布在600 m以下的山前区域.总体而言,CMA?REPS对此次强降水过程的预报偏差主要源自大气环流的模拟偏差以及复杂地形作用.

关键词: 集合预报, “21.7”河南暴雨, 概率预报, 预报检验

Abstract:

In July 2021,Henan province experienced widespread,intense,and concentrated extremely heavy rainfall,resulting in significant damage. This paper evaluates the forecast performance of the China Meteorological Administration (CMA) Regional Ensemble Forecast System (CMA?REPS) during the heaviest precipitation period from 1400 to 2000 China Standard Time on 20 July 2021,using the CMA Multisource Precipitation Analysis System (CMPAS)?V2.1 product and the fifth generation European Centre for Medium?Range Weather Forecasts (ECMWF) reanalysis (ERA5). The study findings reveal that shorter lead times yield improved precipitation forecasts in terms of ensemble mean and probabilistic forecasts. However,notable forecast biases persist in precipitation intensity and spatial coverage of heavy rainfall. The best and worst ensemble members were identified by combining several precipitation verification scores. An analysis of atmospheric circulation and water vapor conditions was conducted to explore potential causes of precipitation forecast errors.The study identified that a good ensemble member successfully predicted convective precipitation,accounting for 30% of total precipitation in the Zhengzhou area,whereas a bad member failed to forecast convective precipitation. The overall precipitation distribution in both members aligned with the performance of non?convective precipitation. The precipitation area of the good member shifted northeastward,which is associated with the eastward deviation of the forecasted subtropical high position,the northward track deviation of typhoon "Cempaka",and the stronger south wind. In contrast,the precipitation area of the bad member shifted westward,consistent with the deviation of the maximum relative humidity area,possibly due to a stronger low?level east wind transported by the forecasted typhoon "Infa". At the 925 hPa level,the good member accurately predicted a strong convergence zone on the windward slope of the western mountains near Zhengzhou,causing intense rainfall exceeding 25 mm·(6 h)-1,extending from the foothills to elevations above 800 m. Conversely,the bad member predicted a small and weak convergence zone,leading to heavy rainfall confined to the foothill areas below 600 m. Overall,the forecast errors of CMA?REPS for this heavy rain event are primarily attributed to the simulated deviation of atmospheric circulation and the complex orographic effect.

Key words: ensemble forecast, the torrential rain in July 2021 in Henan province, probabilistic forecast, forecast verification

中图分类号: 

  • P456.7

图1

CMPAS产品7月20日14时至20时累积降水量空间分布图(单位:mm)"

图2

CMA?REPS预报的7月20日14时至20时的6 h累积降水量(单位:mm):(a~d)控制预报和(e~h)集合平均The subtitles represent the forecast leadtimes."

表1

不同预报时效下控制预报(mem00)和各集合成员7月20日14时至20时的累积降水量最大值 (mm)"

预报时效42-48 h30-36 h18-24 h6-12 h
mem0033.685.4117.070.1
mem0119.926.943.440.5
mem0219.945.936.253.6
mem0345.434.259.386.8
mem0419.825.829.450.5
mem0534.429.558.857.1
mem0626.026.661.1110.8
mem0723.536.3107.594.7
mem0833.479.446.650.7
mem0936.446.640.446.9
mem1022.335.349.941.1
mem1143.861.474.154.9
mem1228.134.295.663.3
mem1328.736.538.571.7
mem1444.331.150.596.4

图3

CMA?REPS(1~4行)和NCEP?GEFS(第5行)预报的7月20日14时至20时的6 h累积降水概率预报The precipitation thresholds and leadtimes are shown in each panel."

表2

针对20日14时至20时的6 h累积降水,不同预报时效下CMA?REPS和NCEP?GEFS概率预报的不同阈值的BS评分"

0.1 mm10 mm25 mm50 mm
42~48 h (CMA)0.1770.0670.0370.015
30~36 h (CMA)0.1920.0520.0320.015
18~24 h (CMA)0.1720.0530.0290.015
6~12 h (CMA)0.2450.0590.0240.013
6~12 h (NCEP)0.3470.0750.0370.014

图4

CMA?REPS的15个集合成员于20日08时预报的当日14时至20时累积降水量分布图(单位:mm)Member ID is in each panel."

图5

观测场和集合成员预报的20日14时至20时累积降水量的最大值落点分布"

图6

CMA?REPS好成员07(左)和坏成员04(右)于20日08时起报的当日14时至20时累积对流性降水和非对流性降水量分布图(单位:mm)"

图7

(a) NCEP?GFS分析场在20日14时的地面2 m高度相对湿度场,(b)和(c)分别是好成员07和坏成员04在08时预报的对应时间相对湿度场(红框为河南地区)"

图8

20日17时的(a) ERA5分析场、(b)好成员07、(c)坏成员04的850 hPa位势高度场(等值线)和风场(矢量场);(d~f)分别是上述风场与ERA5分析场的差值(填色为风速,红框范围内为河南省)"

图9

同图8,但为500 hPa形势场"

图10

CMA台风最佳路径与好坏预报成员从20日08时起报到22日08时的台风路径,左为“查帕卡”,右为“烟花”Highlighted dots represent 14:00 and 20:00 CST on 20 July."

图11

20日17时(a) 07和(b) 04成员预报的925 hPa上的风场和散度(10-4 s-1),(c) 20日14时至20时的观测数据与20日08时预报累积6 h降水叠加地形图,其中等值线代表降水大于25 mm·(6 h)-1的区域"

1 罗亚丽,孙继松,李英,等. 中国暴雨的科学与预报:改革开放40年研究成果. 气象学报202078(3):419-450.
Luo Y L, Sun J S, Li Y,et al. Science and prediction of heavy rainfall over China:Research progress since the reform and opening?up of the People's Republic of China. Acta Meteorologica Sinica202078(3):419-450.
2 Wen Y R, Xue L, Li Y,et al. Interaction between typhoon Vicente (1208) and the Western Pacific Subtropical High During the Beijing extreme rainfall of 21 July 2012. Journal of Meteorological Research201529(2):293-304.
3 姜晓曼,袁慧玲,薛明,等. 北京“7.21”特大暴雨高分辨率模式分析场及预报分析. 气象学报,2014,72(2):207-219.
Jiang X M, Yuan H L, Xue M,et al. Analysis of a torrential rainfall event over Beijing on 21-22 July 2012 based on high resolution model analyses and forecasts. Acta Meteorologica Sinica201472(2):207-219.
4 季晓东,漆梁波. ECMWF模式降水预报与极端天气预报指数在暴雨预报中的评估与应用. 暴雨灾害201837(6):566-573.
Ji X D, Qi L B. Evaluation and application of ECMWF model precipitation and extreme weather forecast index of precipitation on heavy rainfall forecast. Torrential Rain and Disasters201837(6):566-573.
5 Kim I W, Oh J, Woo S,et al. Evaluation of precipitation extremes over the Asian domain:Observation and modelling studies. Climate Dynamics201952(3):1317-1342.
6 Epstein E S. Stochastic dynamic prediction. Tellus196921(6):739-759.
7 Leith C E. Theoretical skill of Monte Carlo forecasts. Monthly Weather Review1974102(6):409-418.
8 Toth Z, Kalnay E. Ensemble forecasting at NCEP and the breeding method. Monthly Weather Review1997125(12):3297-3319.
9 Khan M M, Shamseldin A Y, Melville B W. Impact of ensemble size on forecasting occurrence of rainfall using TIGGE precipitation forecasts. Journal of Hydrologic Engineering201419(4):732-738.
10 Stensrud D J, Brooks H E, Du J,et al. Using ensembles for short?range forecasting. Monthly Weather Review1999127(4):433-446.
11 张涵斌,陈静,智协飞,等. GRAPES区域集合预报系统应用研究. 气象201440(9):1076-1087.
Zhang H B, Chen J, Zhi X F,et al. Study on the application of GRAPES regional ensemble prediction system. Meteorological Monthly201440(9):1076-1087.
12 Xue M, Thomas K W, Wang Y J,et al. CAPS realtime storm scale ensemble and high resolution forecasts for the NOAA Hazardous Weather Testbed 2010 spring experiment∥The 25th Conference on Severe Local Storms American Meteorological Society. Denver,CO,USA:AMS,2010.
13 Zhu K F, Xue M. Evaluation of WRF-based convection?permitting multi?physics ensemble forecasts over China for an extreme rainfall event on 21 July 2012 in Beijing. Advances in Atmospheric Sciences201633(11):1240-1258.
14 马申佳,陈超辉,何宏让,等. 基于BGM的对流尺度集合预报试验及其检验. 高原气象201837(2):495-504.
Ma S J, Chen C H, He H R,et al. Experiment and verification of the convective?scale ensemble forecast based on BGM. Plateau Meteorology201837(2):495-504.
15 Wu Z P, Chen J, Zhang H B,et al. A combined verification method for predictability of persistent heavy rainfall events over East Asia based on ensemble forecast. Journal of Tropical Meteorology202026(1):35-46.
16 苏爱芳,吕晓娜,崔丽曼,等. 郑州“7.20”极端暴雨天气的基本观测分析. 暴雨灾害,2021,40(5):445-454.
Su A F, Lü X N, Cui L M,et al. The basic observational analysis of "7.20" extreme rainstorm in Zhengzhou. Torrential Rain and Disasters,2021,40(5):445-454.
17 Nie Y B, Sun J Q. Moisture sources and transport for extreme precipitation over Henan in July 2021. Geophysical Research Letters202249(4):e2021GL097446.
18 Deng L, Feng J N, Zhao Y,et al. The remote effect of binary typhoon Infa and Cempaka on the "21.7" heavy rainfall in Henan province,China. Journal of Geophysical Research:Atmospheres,2022127(16):e2021JD036260.
19 Zhu K F, Zhang C Y, Xue M,et al. Predictability and skill of convection?permitting ensemble forecast systems in predicting the record?breaking “21·7” extreme rainfall event in Henan Province,China. Science China Earth Sciences202265(10):1879-1902.
20 栗晗,王新敏,朱枫. “21·7”河南极端暴雨多模式预报性能综合评估. 大气科学学报202245(4):573-590.
Li H, Wang X M, Zhu F. Comprehensive evaluations of multi?model forecast performance for "21·7" Henan extreme rainstorm. Transactions of Atmospheric Sciences202245(4):573-590.
21 孙帅,师春香,潘旸,等. 中国区域三源融合降水产品的改进效果评估. 水文202040(6):10-15,23.
Sun S, Shi C X, Pan Y,et al. The improved effects evaluation of three?source merged of precipitation products in China. Journal of China Hydrology202040(6):10-15,23.
22 王太微. 中尺度模式不确定性与初值扰动试验研究. 硕士学位论文. 北京:中国气象科学研究院,2008.
Wang T W. Impact of initial perturbation on meso?scale model uncertainty. Master Dissertation. Beijing:Chinese Academy of Meteorological Sciences,2008.
23 龙柯吉,陈静,马旭林,等. 基于集合卡尔曼变换的区域集合预报初步研究. 成都信息工程学院学报201126(1):37-46.
Long K J, Chen J, Ma X L,et al. The preliminary study on ensemble prediction of GRAPES?Meso based on ETKF. Journal of Chengdu University of Information Technology201126(1):37-46.
24 Zhang H B, Chen J, Zhi X F,et al. A comparison of ETKF and downscaling in a regional ensemble prediction system. Atmosphere20156(3):341-360.
25 王婧卓,陈静,庄照荣,等. GRAPES区域集合预报模式的初值扰动增长特征. 大气科学201842(2):367-382.
Wang J Z, Chen J, Zhuang Z R,et al. Characteristics of initial perturbation growth rate in the regional ensemble prediction system of GRAPES. Chinese Journal of Atmospheric Sciences201842(2):367-382.
26 袁月,李晓莉,陈静,等. GRAPES区域集合预报系统模式不确定性的随机扰动技术研究. 气象201642(10):1161-1175.
Yuan Y, Li X L, Chen J,et al. Stochastic parameterization toward model uncertainty for the GRAPES mesoscale ensemble prediction system. Meteorological Monthly201642(10):1161-1175.
27 Schaefer J T. The critical success index as an indicator of warning skill. Weather and Forecasting19905(4):570-575.
28 Wilks D S. Statistical methods in the atmospheric sciences:An introduction. San Diego:Academic Press,1995.
29 张入财,田金华,陈超辉,等. 郑州“7·20”特大暴雨极端性成因分析. 气象与环境科学202245(2):52-64.
Zhang R C, Tian J H, Chen C H,et al. Cause analysis of the 20 July,2021 extreme rainstorm event in Zhengzhou. Meteorological and Environmental Sciences202245(2):52-64.
30 Zhang Q H, Li R M, Sun J Z,et al. A review of research on the record?breaking precipitation event in Henan Province,China,July 2021. Advances in Atmospheric Sciences,2023,40(8):1485-1500.
31 Wei P, Xu X, Xue M,et al. On the key dynamical processes supporting the 21.7 Zhengzhou record?breaking hourly rainfall in China. Advances in Atmospheric Sciences,2023,40(3):337-349.
32 Ying M, Zhang W, Yu H,et al. An overview of the China Meteorological Administration tropical cyclone database. Journal of Atmospheric and Oceanic Technology201431(2):287-301.
33 Lu X Q, Yu H, Ying M,et al. Western North Pacific tropical cyclone database created by the China Meteorological Administration. Advances in Atmospheric Sciences202138(4):690-699.
[1] 赵志宇, 张进, 雷荔傈, 张熠. “21.7”河南暴雨的集合敏感性分析[J]. 南京大学学报(自然科学版), 2024, 60(2): 181-193.
[2] 张心怡, 张熠, 刘昊炎, 王其伟, 王迪. 模拟启动时间和双台风对“21.7”河南极端暴雨事件的影响研究[J]. 南京大学学报(自然科学版), 2024, 60(2): 194-208.
[3] 李嘉鹏,汤剑平**

. WRF模式对中国东南地区的多参数化短期集合预报试验*[J]. 南京大学学报(自然科学版), 2012, 48(6): 677-688.
[4]  万夫敬,袁慧玲**,宋金杰,王元

.  南京地区降水预报研究*[J]. 南京大学学报(自然科学版), 2012, 48(4): 513-525.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!