南京大学学报(自然科学版) ›› 2024, Vol. 60 ›› Issue (2): 267–275.doi: 10.13232/j.cnki.jnju.2024.02.008

• • 上一篇    

海洋性大陆地形对夏季季节内振荡的影响:基于2020年9月个例的数值模拟分析

孔钰博1, 周逸豪2, 汪曙光1()   

  1. 1.中尺度灾害性天气教育部重点实验室,南京大学大气科学学院,南京,210023
    2.科罗拉多州立大学大气科学系,Fort Collins,CO, 80523,美国
  • 收稿日期:2024-02-01 出版日期:2024-03-30 发布日期:2024-03-29
  • 通讯作者: 汪曙光 E-mail:wangsg@nju.edu.cn
  • 基金资助:
    国家自然科学基金(42275055)

The influence of topography of Maritime Continent on the boreal summer intraseasonal oscillation: Numerical simulation analysis based on a case in September 2020

Yubo Kong1, Yihao Zhou2, Shuguang Wang1()   

  1. 1.Key Laboratory of Mesoscale Severe Weather, Ministry of Education, and School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
    2.Department of Atmospheric Sciences, Colorado State University, Fort Collions, CO, 80523, USA
  • Received:2024-02-01 Online:2024-03-30 Published:2024-03-29
  • Contact: Shuguang Wang E-mail:wangsg@nju.edu.cn

摘要:

海洋性大陆(Maritime Continent,MC)是夏季大气季节内振荡(the Boreal Summer IntraSeasonal Oscillation,BSISO)传播的必经途径,而MC对于BSISO结构和传播产生的重要的影响机制很不清楚.针对此问题,利用高精度数值模式对一次BSISO事件展开数值模拟试验研究.选取2020年8-9月的一次BSISO事件,利用高精度数值模式WRF (Weather Research and Forecasting model)对本次BSISO过程进行了近一个月的数值模拟.发现WRF控制试验合理模拟出与再分析资料中相近的北传低层风场以及明显具有BSISO特征的西北?东南倾斜的雨带,并合理地捕捉了本次BSISO事件的传播特征和平均状态.为了研究MC地形对本次事件传播和强度的影响,在WRF模式中去除了MC地区的地形,开展了敏感性试验.在去除地形的敏感性试验中,BSISO低空风加强,传播更加平滑,整体降水幅度增加,而在岛屿上水汽大幅增加,降水量减少.在地形高度为零的情况下,纬向平流大大增强,从而增强了海上对流,促进了BSISO的加强和传播.此数值模拟试验研究揭示了MC地形对BSISO降水结构、传播和幅度的影响.

关键词: 夏季季节内振荡, 海洋性大陆, 地形, 对流允许数值试验

Abstract:

Maritime Continent (MC) may interfere the propagation of BSISO (the Boreal Summer IntraSeasonal Oscillation). In this study,the Weather Research & Forecast (WRF) model is used to simulate the BSISO event observed in the area around MC during the period of August-September,2020. To study the influence of the topography of the MC on the propagation and intensity of this BSISO event,the topography of the MC is flattened in the WRF model,and a sensitivity experiment is conducted for comparison with the control experiment. The WRF control simulation shows the low?level wind similar to this in ERA5,as well as a northwest ? southeast tilted rain band as observed BSISO,indicating that the control experiment reasonably captures the mean state and propagation characteristics of this BSISO event. Eliminating the topography around the MC region in the sensitivity experiment results in stronger low?level wind and smoother propagation. There is a significant increase in water vapor and a decrease in precipitation around the MC islands. The zonal advection is greatly enhanced,thus enhancing the convection over the ocean and promoting propagation of this BSISO. The results suggest substantial impact of the MC island on the structure and propagation of the BSISO.

Key words: the Boreal Summer IntraSeasonal Oscillation, Maritime Continent, topography, cloud?permitting simulation

中图分类号: 

  • P444

图1

WRF模式中模拟区域的地形高度(填色图,单位:m)The red polygon indicates the areas of MC islands."

图2

观测(左列)、CNTL(中列)和No Topography试验(右列)在模拟期间的每五天平均的降水(填色图,单位:mm·d-1)和850 hPa风场距平场(矢量图,单位:m·s-1)"

图3

(a)观测,(d) CNTL,(g) No Topography试验在模拟期间的平均降水(填色图,单位:mm·d-1);(b, e, h)和(c, f, i)分别为整层积分可降水量(填色图,单位:kg·m-2)和850 hPa风场(填色图,单位:m·s-1)(d) CNTL, (g) No topography; (b, e, h) are the same as in (a, d) and (g), but for averaged CWV (unit: kg·m-2),and (c, f, i) are the same as in (a, d) and (g), but for averaged wind at 850 hPa (unit: m·s-1), respectively"

图4

观测/再分析的0°~5°N平均日降水量(填色图,单位:mm·d-1)和850 hPa纬向风异常(等值线图,单位:m·s-1)时间?经度平均图.(a, c, d)分别为观测、CNTL和No Topography试验, (b, e, f)分别为5°~10°N的观测、CNTL和No Topography试验(e) CNTL, and (f) No Topography are the time?longitude diagrams of 5°~10°N"

图5

印度洋(左列)和MC(右列)的平均日降水量(填色图,单位:mm·d-1)和850 hPa纬向风异常(等值线图,单位:m·s-1)时间?纬度平均图, (a, b) (c, d) (e, f)分别为观测、CNTL和No Topography试验"

1 Krishnamurti T N, Subrahmanyam D. The 30-50 day mode at 850 mb during MONEX. Journal of the Atmospheric Sciences198239(9):2088-2095.
2 Wang B, Rui H. Synoptic climatology of transient tropical intraseasonal convection anomalies:1975-1985. Meteorology and Atmospheric Physics199044(1-4):43-61. DOI:10.1007/BF01026810 .
3 Kikuchi K. The Boreal Summer Intraseasonal Oscillation (BSISO):A review. Journal of the Meteorological Society of Japan202199(4):933-972. DOI:10.2151/jmsj.2021-045 .
4 Strnad F M, Schl?r J, Geen R,et al. Propagation pathways of Indo?Pacific rainfall extremes are modulated by Pacific sea surface temperatures. Nature Communications202314:5708. DOI:10.1038/s41467-023-41400-9 .
5 Gadgil S, Gadgil S. The Indian monsoon,GDP and agriculture. Economic and Political Weekly200641(47):4887,4889-4895.
6 Zhang C D, Ling J. Barrier effect of the Indo?Pacific Maritime Continent on the MJO:Perspectives from tracking MJO precipitation. Journal of Climate201730(9):3439-3459. DOI:10.1175/JCLI-D-16-0614.1 .
7 Inness P M, Slingo J M. The interaction of the Madden?Julian Oscillation with the Maritime Continent in a GCM. Quarterly Journal of the Royal Meteorological Society,2006132(618):1645-1667. DOI:10.1256/qj.05.102 .
8 Bellon G, Sobel A H. Instability of the axisymmetric monsoon flow and intraseasonal oscillation. Journal of Geophysical Research:Atmospheres,2008113(D7):D07108. DOI:10.1029/2007JD009291 .
9 Jiang X N, Li T M, Wang B. Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. Journal of Climate200417(5):1022-1039.
10 Wang S G, Sobel A H. A unified moisture mode theory for the Madden–Julian oscillation and the boreal summer intraseasonal oscillation. Journal of Climate202235(4):1267-1291. DOI:10.1175/JCLI-D-21-0361.1 .
11 Maloney E D, Sobel A H. Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. Journal of Climate200417(22):4368-4386. DOI:10.1175/jcli-3212.1 .
12 Sobel A H, Maloney E D, Bellon G,et al. The role of surface heat fluxes in tropical intraseasonal oscillations. Nature Geoscience20081(10):653-657. DOI:10.1038/ngeo312 .
13 Sobel A H, Maloney E D, Bellon G,et al. Surface fluxes and tropical intraseasonal variability:A reassessment. Journal of Advances in Modeling Earth Systems20102(1):2. DOI:10.3894/james.2010.2.2 .
14 Hsu P C, Lee J Y, Ha K J. Influence of boreal summer intraseasonal oscillation on rainfall extremes in southern China. International Journal of Climatology201636(3):1403-1412. DOI:10.1002/joc.4433 .
15 Wu C H, Hsu H H. Topographic influence on the MJO in the Maritime Continent. Journal of Climate200922(20):5433-5448. DOI:10.1175/2009jcli2825.1 .
16 Tan H C, Ray P, Barrett B S,et al. Role of topography on the MJO in the Maritime Continent:A numerical case study. Climate Dynamics202055(1-2):295-314. DOI:10.1007/s00382-018-4275-3 .
17 Qian J H. Why precipitation is mostly concentrated over islands in the Maritime Continent. Journal of the Atmospheric Sciences200865(4):1428-1441. DOI:10.1175/2007jas2422.1 .
18 Oh J H, Kim K Y, Lim G H. Impact of MJO on the diurnal cycle of rainfall over the western Maritime Continent in the austral summer. Climate Dynamics201238(5-6):1167-1180. DOI:10.1007/s00382-011-1237-4 .
19 Cronin T W, Emanuel K A, Molnar P. Island precipitation enhancement and the diurnal cycle in radiative?convective equilibrium. Quarterly Journal of the Royal Meteorological Society,2015141(689):1017-1034. DOI:10.1002/qj.2443 .
20 Wang S G, Sobel A H. Factors controlling rain on small tropical islands:Diurnal cycle,large?scale wind speed,and topography. Journal of the Atmospheric Sciences201774(11):3515-3532. DOI:10.1175/JAS-D-16-0344.1 .
21 Zhou Y H, Fang J, Wang S G. Impact of islands on the MJO propagation across the Maritime Continent:A numerical modeling study of an MJO event. Climate Dynamics202157(9-10):2921-2935. DOI:10.1007/s00382-021-05849-y .
22 Hersbach H, Bell B, Berrisford P,et al. ERA5 hourly data on pressure levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS)2023,DOI:10.24381/cds.bd0915c6 .
23 Hersbach H, Bell B, Berrisford P,et al. ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS)2023,DOI:10.24381/cds.adbb2d47 .
24 Huffman G J, Bolvin D T, Nelkin E J,et al. The TRMM Multisatellite Precipitation Analysis (TMPA):Quasi-global,multiyear,combined?sensor precipitation estimates at fine scales. Journal of Hydrometeorology20078(1):38-55.
25 Skamarock W C, Klemp J B, Dudhia J,et al. A description of the advanced research WRF model version 4.3. NCAR/TN-556+STR2021. DOI:10.5065/1dfh-6p97 .
26 Tewari M, Chen F, Wang W,et al. Implementation and verification of the unified NOAH land?surface model in the WRF model∥The 20th Conference on Weather Analysis and Forecasting/The 16th Conference on Numerical Weather Prediction. Seattle,WA,USA:American Meteorological Society,2004:11-15.
27 Iacono M J, Delamere J S, Mlawer E J,et al. Radiative forcing by long–lived greenhouse gases:Calculations with the AER radiative transfer models. Journal of Geophysical Research:Atmospheres,2008113(D13):D13103. DOI:10.1029/2008JD009944 .
28 Chou M D, Suarez M J, Liang X Z,et al. A thermal infrared radiation parameterization for atmospheric studies. NASA Tech. Memo.104606,19,2001.
29 Hong S Y, Noh Y, Dudhia J. A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review2006134(9):2318-2341. DOI:10.1175/MWR3199.1 .
30 Lim K S S, Hong S Y. Development of an effective double–moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Monthly Weather Review2010138(5):1587-1612. DOI:10.1175/2009MWR2968.1 .
31 Jiang X N, Adames á F, Zhao M,et al. A unified moisture mode framework for seasonality of the Madden?Julian oscillation. Journal of Climate201831(11):4215-4224.
[1] 艾真珍, 董寅硕, 徐昕, 季玉枝, 衡志炜. 青藏高原东部地形对四川盆地东北部一次暴雨过程的影响[J]. 南京大学学报(自然科学版), 2024, 60(2): 209-217.
[2] 蒋璐媛1,2,3,肖鹏峰1,2,3*,冯学智1,2,3,耶楠1,2,3,贺广均1,2,3,4,张学良1,2,3. 山区复杂地形条件下GF-1卫星遥感雪面反射率计算[J]. 南京大学学报(自然科学版), 2015, 51(5): 944-954.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!