南京大学学报(自然科学版) ›› 2022, Vol. 58 ›› Issue (5): 766–779.doi: 10.13232/j.cnki.jnju.2022.05.003

• • 上一篇    

上海地区三类主要暴雨天气的云微物理和边界层敏感性模拟研究

徐之骁1, 漆梁波2, 王元1()   

  1. 1.中尺度灾害性天气教育部重点实验室,南京大学大气科学学院,南京,210023
    2.上海市气象局,上海中心气象台,上海,200030
  • 收稿日期:2022-07-30 出版日期:2022-09-30 发布日期:2022-09-30
  • 通讯作者: 王元 E-mail:yuanasm@nju.edu.cn
  • 基金资助:
    国家重点研发计划(2018YFC1507300);第二次青藏高原综合科学考察研究(2019QZKK0105);国家自然科学基金(91837207)

Numerical study of sensitivities of three major types of heavy rainfall in the Shanghai region to microphysical and planetary bounary layer processes

Zhixiao Xu1, Liangbo Qi2, Yuan Wang1()   

  1. 1.Key Laboratory of Mesoscale Severe Weather,Ministry of Education,School of Atmosphere Sciences, Nanjing University, Nanjing, 210023, China
    2.Shanghai Central Meteorological Observatory, Shanghai Meteorological Service, Shanghai, 200030, China
  • Received:2022-07-30 Online:2022-09-30 Published:2022-09-30
  • Contact: Yuan Wang E-mail:yuanasm@nju.edu.cn

摘要:

利用中国气象局上海台风所的WARMS高分辨率区域模式研究了上海地区三类主要的暴雨天气(准静止锋雨带型、副高边缘强对流型以及暖区雷暴型)对云微物理和边界层过程的敏感性.结果表明,不同云微物理和边界层参数化方案的组合对强降水中心的位置和强度影响较大,但是对主要雨带及走向影响不大.准静止锋雨带型采用Thompson方案模拟的整体降水量更多,WSM6方案模拟的强降水相关性更好,评分更高;副高边缘强对流型中WSM6?MYJ组合激发上海本地对流的效果更明显,但整个雨带来看Thompson方案更有优势;暖区雷暴型中WSM6?MYJ组合优势明显.总体上,Thompson?YSU组合能够模拟出准静止锋雨带型暴雨中丰富的液水含量和冰相粒子,以及较强的整层抬升作用;WSM6?MYJ组合则在副高边缘强对流型和暖区雷暴型这类型暴雨中刻画了较明显的强对流结构,使得地面降水更为强盛.

关键词: 暴雨, 云微物理和边界层方案, 数值模拟

Abstract:

Based on the high?resolution operational regional model WARMS in the Shanghai Typhoon Institute,this work studies the sensitivities of three types of heavy rainfall (quasi?stationary frontal rain belt,subtropical high?edge strong convection,and warm?sector thunderstorms) in the Shanghai region to different microphysical and planetary boundary layer parameterization schemes. The results show that different schemes mainly affect the location and intensity of the heavy rainfall center,while having little effect on the location and pattern of the primary rain belt. For quasi?stationary frontal rain belt,the Thompson scheme simulates a larger area of precipitation,and the WSM6 scheme has a better correlation and higher score. The Thompson?YSU combination has the best performance,despite of some positioning biases. For subtropical high?edge strong convection,the WSM6?MYJ combination is more effective in triggering local convections in Shanghai,but the Thompson scheme has a slightly higher TS score for the whole rain belt. The WSM6?MYJ combination also has obvious advantages for the warm?sector thunderstorms. In general,the Thompson?YSU combination can simulate abundant liquid water and ice particles of the quasi?stationary frontal rain belt,along with the strong uplift across whole layers. The WSM6?MYJ combination has more obviously strong convective structures for the heavy rainfall in the subtropical high?edge and warm?sector thunderstorms,which strengthen the surface precipitation.

Key words: heavy rainfall, microphysical and planetary boundary layer schemes, numerical simulation

中图分类号: 

  • P435.1

图1

模式模拟区域"

表1

上海地区暴雨天气类型划分比较"

划分类型个例上海地区发生时期最强降水时段
准静止锋雨带型20120908

冷暖空气交汇

系统性降水

盛夏末期下半夜至早晨
20140831
副高边缘强对流型20100826

暖区

对流性降水

梅雨期结束后下午至傍晚
20130825
暖区雷暴型20100729

暖区

对流性降水

盛夏下午至傍晚
20130801

图2

500 hPa位势高度场(黑色实线,单位:gpm),水汽通量(阴影,单位:mg·(kg·s)-1)以及假相当位温(彩色实线,单位:K):2014年9月1日08时(a,d);2010年8月26日20时(b,e);2013年8月1日14时(c,f)The strongest precipitation moment,the black dashed arrow is the direction of the water vapor channel,the red frame is Shanghai and surrounding areas"

图3

2014年8月31日08时至9月1日08时、2010年8月26日08时至8月27日08时、2013年8月1日08时至8月2日08时的24 h累积降水实况(a,f,k)和不同参数化方案组合模拟结果(单位:mm)(b,g,l) Thompson?YSU,(c,h,m) Thompson?MYJ,(d,i,n) WSM6?YSU,(e,j,o) WSM6?MYJ"

表2

不同方案组合对不同等级降水量的TS评分结果"

类型个例方案组合TS评分

模拟最大

降水量( mm )

≥10 mm≥25 mm≥50 mm≥100 mm
准静止锋雨带型2014083110.840.240.030.00173.54练塘镇
20.840.060.060.00103.28金山
30.720.500.400.40133.66崇明
40.840.570.480.00107.42明珠湖
副高边缘强对流型2010082610.360.140.15-54.91商榻镇
20.490.140.25-73.72明珠湖
30.610.190.14-95.06崇明
40.590.350.180.00109.92明珠湖
暖区雷暴型2013080110.500.350.11-98.96森林公园
20.360.150.00-70.08明珠湖
30.330.200.00-77.93F1赛车场
40.410.160.000.00115.07明珠湖

图4

上海地区3 h强降水站点分布图(粉色点为模拟大于50 mm站点,橙色点为模拟35~50 mm站点,蓝色点为实况大于50 mm站点,绿色点为35~50 mm站点)从左至右列依次是实况图和Thompson?YSU,Thompson?MYJ,WSM6?YSU,WSM6?MYJ方案组合"

表3

不同类型暴雨短时强降水最优方案组合"

划分类型个例

每1 h大于35 mm

模拟能力和潜力

3 h (1 h)

强降水站点个数

3 h (1 h)

强降水站点分布

准静止锋雨带型20120908

Thompson⁃YSU

Thompson⁃YSU

Thompson⁃YSU

Thompson⁃YSU

都存在落区偏差

都存在落区偏差

20140831
副高边缘强对流型20100826

WSM6⁃MYJ

WSM6⁃MYJ

WSM6⁃MYJ

WSM6⁃MYJ

Thompson⁃MYJ

Thompson⁃MYJ

20130825
暖区雷暴型20100729

WSM6⁃MYJ

WSM6⁃MYJ

WSM6⁃MYJ

WSM6⁃MYJ

WSM6⁃MYJ

WSM6⁃MYJ

20130801

图5

不同暴雨类型20140831个例(a,b,c,d)、20100826个例(e,f,g,h)、20130801个例(i,j,k,l)的各物理方案组合模拟的区域(30.5°~32°N,120.5°~122°E)平均冰相粒子(云冰、雪、霰)含量(阴影,单位:g·kg-1)随时间演变:(a,e,i) Thompson?YSU,(b,f,j) Thompson?MYJ;(c,g,k) WSM6?YSU,(d,h,l) WSM6?MYJThe dotted lines show the simulated surface hourly rainfall (unit:mm) and the gray dashed lines are isotherms"

图6

同图5,但为云中液态水(云水、雨水)含量(蓝色虚线代表垂直速度,单位:m·s-1)"

1 漆梁波,朱佳蓉,徐秀芳,等.上海地区暴雨预报及分析手册.北京:气象出版社,2015.
2 Yih A C, Walsh J E.Sensitivities of numerical model forecasts of extreme cyclone events. Advances in Atmospheric Sciences,19918(1):51-66.
3 Skamarock W, Klemp J B, Dudhia J,et al. A description of the advanced research WRF version 3. NCAR Technical Note,NCAR/TN?475+STR,2008.
4 史金丽.WRF模式不同参数化方案对内蒙古不同性质降水模拟分析.博士学位论文,南京:南京信息工程大学,2013.
Shi J L. Research on different rainfall simulation of WRF model with various parameterization schemes in Inner Mongolia. Ph.D. Dissertation,Nanjing:Nanjing University of Information Science & Technology,2013.
5 阚煜,刘朝顺,乔枫雪,等.不同云微物理方案对上海特大暴雨模拟影响的分析.热带气象学报,2017,33(3):399-414.
Kan Y, Liu C X, Qiao F X,et al. Analysis of the impact of different microphysics parameterization schemes in simulating heavy rainfall over Shanghai. Journal of Tropical Meteorology,2017,33(3):399-414.
6 徐之骁,徐海明.不同积云对流参数化方案对“7.21”北京特大暴雨模拟的影响.气象,2017,43(2):129-140.
Xu Z X, Xu H M.Simulation contrast of different cloud parameterization schemes for the extremely severe torrential rainfall event in Beijing on 21 July 2012. Meteorological Monthly,2017,43(2):129-140.
7 Luo Y L, Chen Y R X. Investigation of the predictability and physical mechanisms of an extreme?rainfall?producing mesoscale convective system along the Meiyu front in east China:An ensemble approach. Journal of Geophysical Research Atmoshperes2015,120(20):10593-10618.
8 Huang L, Luo Y L. Evaluation of quantitative precipitation forecasts by TIGGE ensembles for south China during the presu mmer rainy season. Journal of Geophysical Research Atmoshperes2017,122(16):8494-8516.
9 罗亚丽,孙继松,李英,等. 中国暴雨的科学与预报:改革开放40年研究成果. 气象学报2020,78(3):419-450.
Luo Y L, Sun J S, Li Y,et al. Science and prediction of heavy rainfall over China:Research progress since the reform and opening?up of People's Republic of China. Acta Meteorologica Sinica2020,78(3):419-450.
10 Lin Y L, Farley R D, Orville H D. Bulk parameterization of the snow field in a cloud model. Journal of Climate and Applied Meteorologh,1983,22(6):1065-1092.
11 Chen S J, Kuo Y H, Wang W,et al. A modeling case study of heavy rainstorms along the Mei?Yu front. Monthly Weather Review,1998,126(9):2330-2351.
12 Rajeevan M, Kesarkar A, Thampi S B,et al. Sensitivity of WRF cloud microphysics to simulations of a severe thunder storm event over Southeast India. Annals of Geophyscs,2010(28):603-619.
13 Raju P V S, Potty J, Mohanty U C. Sensitivity of physical parameterizations on prediction of tropical cyclone Nargis over the Bay of Bengal using WRF model. Meteorology and Atmospheric Physics,2011,113(3-4):125-137.
14 马严枝,陆昌根,高守亭. 8.19华北暴雨模拟中微物理方案的对比试验. 大气科学,2012,36(4):835-850.
Ma Y Z, Lu C G, Gao S T. The effects of different microphysical schemes in WRF on a heavy rainfall in North China during 18-19 august 2010. Chinses Journal of Atmospheric Sciences,2012,36(4):835-850.
15 Stull R B. An introduction to boundary layer meteorology. Dordrecht,Netherlands:Kluwer Academic Publisher,1988.
16 陈炯,王建捷.边界层参数化方案对降水预报的影响.应用气象学报,2006,17():11-17.
Chen J, Wang J J. Mesoscale precipitation simulation sensi?tivity to PBL parameterization. Journal of Applied Meteorological Science,2006,17(S):11-17.
17 吴庆梅,刘卓,王国荣,等.一次华北暴雨过程中边界层东风活动及作用.应用气象学报,2015,26(2):160-172.
Wu Q M, Liu Z, Wang G R,et al. The influence of boundary layer east wind on a north China rainstorm. Journal of Applied Meteorological Science,2015,26(2):160-172.
18 朱格利,林万涛,曹艳华.用WRF模式中不同云微物理参数化方案对华南一次暴雨过程的数值模拟和性能分析.大气科学,2014,38(3):513-523.
Zhu G L, Lin W T, Cao Y H. Numerical simulation of a rainstorm event over South China by using various cloud microphysics parameterization schemes in WRF Model and its performance analysis. Journal of Atmosphere Science,2014,38(3):513-523.
19 Hu X M, Nielsen?Gammon J W, Zhang F Q.Evaluation of three planetary boundary layer schemes in the WRF model. Journal of Applied Meteorology and Climatology,2010,49:1831-1844.
20 Wisse J S P, De Arellano J V G. Analysis of the role of the planetary boundary layer schemes during a severe convective storm.Annal Geophys,2004,22(6):1861-1874.
21 慕建利.陕西关中强暴雨中尺度对流系统研究.博士学位论文,南京,南京气象学院,2009.
Mu J L. Study on MCS of the heavy rainfall event in the middle part of Shanxi. Ph.D. dissertation,Nanjing:Nanjing Meteorological Institute,2009.
22 Jankov I, Gallus J W A, Segal M,et al. The impact of different WRF model physical parameterizations and their interactions on warm season MCS rainfall. Weather Forecasting,2005,20(6):1048-1060.
23 王晓峰,许晓林,徐同,等.华东区域数值预报系统对极端降水预报能力的评估.气象科技进展,2017,7(6):67-74.
Wang X F, Xu X L, Xu T,et al. Verification of the extreme precipitation forecast from SMS?WARMSV2.0. Advances in Meteorological Science Technology,2017,7(6):67-74.
24 Kain J S, Fritsch J M. Convective parameterization in mesoscale models:The Kain?Fritsch scheme∥The Representation of Cumulus Convection in Numerical Models. Boston,MA,USA:Bulletin of the American Meteorologic Society,1993(24):165-170.
25 徐同,杨玉华,李佳,等.SMS?WARMS V 2.0模式对中国西南地区降水预报能力的客观检验.气象,2019,45(8):1065-1074.
Xu T, Yang Y H, Li J,et al. An objective verification of forecasting ability of SMS?WARMS V 2.0 model precipitation in Southwest China. Meteorology Monthly,2019,45(8):1065-1074.
26 Hong S Y, Pan H L. Nonlocal boundary layer vertical diffusion in a medium?range forecast model. Monthly Weather Review,1996,124(10):2322-2339.
27 Janjic' Z I. Nonsingular implementation of the Mellor?Yamada level 2.5 scheme in the NCEP Mesoscale model. NCEP Office Note,2002,437:61.
28 Hong S Y, Lim K S, Kim J H,et al. The WRF single?moment6?class microphysics scheme (WSM6).Journal of Korean Meteorological Society,2006,42(2):129-151.
29 Morrison H, Milbrandt J.Comparison of two?moment bulk microphysics schemes in idealized supercell thunderstorm simulations. Monthly Weather Review,2011,139(4):1103-1130.
30 陈涛,林建,张芳华,等.“16.7”华北极端强降水过程对流尺度集合模拟试验不确定性分析.气象,2017,43(5):513-527.
Chen T, Lin J, Zhang F H,et al. Uncertainty analysis on the July 2016 extreme preci?pitation event in north China using convection?allowing ensemble simulation. Meteorology Monthly,2017,43(5):513-527.
31 陈杨瑞雪,罗亚丽.不同边界层参数化方案和陆面过程参数化方案对一次梅雨锋暴雨显式对流模拟的影响分析.热带气象学报,2016,32(5):656-667.
Chen Y R X, Luo Y L. Analysis of the influence of different parameterization schemes representing the planetary boundary layer and land surface processes on convection?permitting simulations of a heavy rainfall event along Mei?Yu front. Journal of Tropic Meteorology,2016,32(5):656-667.
32 任华荣,高志球,李煜斌,等.不同边界层方案对一次华北暴雨数值模拟的敏感性研究.气象科学,2017,37(1):10-20.
Ren H R, Gao Z Q, Li B,et al. Sensitivity study of different boundary layer parameterization schemes on the numerical simulation of a rainstorm over North China.Journal of Meteorological Science,2017,37(1):10-20.
33 Clark A J, Gallus W A J, Weisman M L. Neighborhood?based verification of precipitation forecasts from convection?allowing NCAR WRF model simulations and the operational NAM. Weather Forecasting,2010,25(5):1495-1509.
34 Johnson A, Wang X.Verificaiton and calibration of neighborhood and object?based probabilistic precipi?tation forecasts from a multi?model convection?allowing ensemble.Monthly Weather Review,2012,140(9):3054-3077.
35 朱佳蓉.近12年上海各季节暴雨个例分型及预报要点∥第31届中国气象学会年会S2灾害天气监测、分析与预报.北京:中国气象学会,2014:2824-2840.
36 李建辉.华南初夏的超低空急流及其对暴雨的影响.气象学报198240(3):319-326.
Li J H. Ultra low?level jets and the heavy rain in early su mmer over south China.Acta Meteorologica Sinica,1982,40(3):319-326.
37 孙健,赵平,周秀骥.一次华南暴雨的中尺度结构及复杂地形的影响.气象学报,2002,60(3):333-342.
Sun J, Zhao P, Zhou X J. The mesoscale structure of a south china rainstorm and the influence of complex topography.Acta Meteorologica Sinica,2002,60(3):333-342.
38 丁成慧,李江南,赵杨洁,等. 边界层参数化方案对南海秋季台风“莎莉嘉”(2016)模拟的影响. 热带气象学报,2018(5):657-673.
Ding C H, Li J N, Zhao Y J,et al. The influence of boundary layer parameteri?zation schemes on autumn typhoon SARIKA (2016) in South China Sea. Journal of Tropic Meteorology,2018(5):657-673.
39 徐之骁,徐海明.不同云微物理方案对“7.21”特大暴雨模拟的对比试验.气象科学,2016,36(1):45-54.
Xu Z X, Xu H M. Simulation contrast of different cloud microphysical schemes on the torrential rainfall event in Beijing on 21 July,2012. Journal of Meteoro?gical Science,2016,36(1):45-54.
40 Hong S, Dudhia J, Chen S. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Monthly Weather Review,2004,132(1):103-120.
41 Hong S Y, Noh Y, Dudhia J. A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review,2006b,134(9):2318-2341.
42 杨秋彦,苗峻峰,王语卉.边界层参数化对海南岛海风环流结构模拟的影响.热带气象学报,2019,35(2):234-242.
Yang Q Y, Miao J F, Wang Y H. Impact of planetary boundary layer parameterizations on simulated sea breeze circulation over the Hainan island. Journal of Tropic Meteorology,2019,35(2):234-242.
[1] 李明珊, 王元兵, 王元. 台风“罗莎”影响东北冷涡强降水的机理研究[J]. 南京大学学报(自然科学版), 2022, 58(5): 741-749.
[2] 张璐,张熠,周博闻. 水平湍流混合对莫拉克(2009)台风强度及结构的影响[J]. 南京大学学报(自然科学版), 2020, 56(5): 616-629.
[3] 毛 磊,张 岩,刘明遥,龚绪龙,于 军,叶淑君. 江苏沿海地区地面沉降约束下的地下水可采资源量评价[J]. 南京大学学报(自然科学版), 2019, 55(3): 429-439.
[4] 李聪元,杨 帆,张 宁. 不同城市冠层模式对城市地表能量平衡模拟能力的检验[J]. 南京大学学报(自然科学版), 2018, 54(3): 637-654.
[5]  张 弛,陈 干,吴剑锋*,施小清,吴吉春.  基于多点地质统计的二维裂隙网络溶质运移模拟[J]. 南京大学学报(自然科学版), 2016, 52(3): 456-463.
[6]  郭 芳,姜光辉*,于 奭,林玉石.  地下河不同流量状态下溶质运移的参数及模拟[J]. 南京大学学报(自然科学版), 2016, 52(3): 496-502.
[7] 贺小桐1,叶淑君1*,于军2,吴吉春1,龚绪龙2. 基于固体颗粒速度场的三维地面沉降模拟[J]. 南京大学学报(自然科学版), 2015, 51(6): 1268-1278.
[8] 张 艳*,战雯静,马蔚纯*,余 琦,陈立民
. 长三角气象及空气质量场对地表资料的敏感性分析
[J]. 南京大学学报(自然科学版), 2015, 51(3): 562-.
[9] 郑祚芳1*,苗世光1,范水勇1,翟国方2,范晨璟3,李莎莎3. 京津冀城市群未来发展情景气候效应模拟[J]. 南京大学学报(自然科学版), 2014, 50(6): 772-780.
[10] 贵志成1*,郑益群2,钱贞成2,何宏让2,曾新民2. 中国东部气溶胶活化颗粒物浓度对区域气候影响的模拟研究[J]. 南京大学学报(自然科学版), 2014, 50(6): 781-791.
[11] 马红云1,2,薛佳庆3,4,江志红1,2,徐海明1,2. 中国东部城市下垫面变化对南海夏季风爆发影响的数值模拟[J]. 南京大学学报(自然科学版), 2014, 50(6): 337-347.
[12] 徐琦琳1,高 抒1,2*,王文昊1,高建华1,2,杨 旸1,2,徐杨佩云1. 典型潮汐水道悬沙浓度的潮控机理模拟分析[J]. 南京大学学报(自然科学版), 2014, 50(5): 646-655.
[13]  钱俊龙1,刘红年1**,唐丽娟2,朱焱2,杨金彪2,朱莲芳2,蒋维嵋1
.  苏州城市灰霾及气溶胶对大气消光贡献的模拟研究*[J]. 南京大学学报(自然科学版), 2013, 49(3): 311-319.
[14]  付登伟,吴剑锋**,施小清

.  张性断层系统中石油运移数值模拟研究*[J]. 南京大学学报(自然科学版), 2012, 48(6): 728-735.
[15]  刘胡蕊,张熠**
.  2008年6月我国南方持续暴雨过程中尺度对流系统特征分析*
[J]. 南京大学学报(自然科学版), 2011, 47(5): 614-626.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!