南京大学学报(自然科学版) ›› 2024, Vol. 60 ›› Issue (2): 181–193.doi: 10.13232/j.cnki.jnju.2024.02.001

• •    下一篇

“21.7”河南暴雨的集合敏感性分析

赵志宇1, 张进2, 雷荔傈1(), 张熠1   

  1. 1.中尺度灾害性天气教育部重点实验室,南京大学大气科学学院,南京,210093
    2.地球系统数值预报中心,中国气象局,北京,100081
  • 收稿日期:2024-02-24 出版日期:2024-03-30 发布日期:2024-03-29
  • 通讯作者: 雷荔傈 E-mail:lililei@nju.edu.cn
  • 基金资助:
    国家自然科学基金(41922036)

Ensemble sensitivity analysis for the "21.7" Henan extreme rainstorm

Zhiyu Zhao1, Jin Zhang2, Lili Lei1(), Yi Zhang1   

  1. 1.Key Laboratory of Mesoscale Severe Weather,Ministry of Education,and School of Atmospheric Sciences,Nanjing University,Nanjing,210093,China
    2.Center for Earth System Modeling and Predictino,China Meteorological Administration,Beijing,100081,China
  • Received:2024-02-24 Online:2024-03-30 Published:2024-03-29
  • Contact: Lili Lei E-mail:lililei@nju.edu.cn

摘要:

河南郑州“21.7”特大暴雨是中国近年来发生的一场严重气象灾害,对此暴雨事件的数值预报模式表现出较大的不确定性,对暴雨落区和降水强度的预测均存在偏差.目前,“21.7”河南暴雨的形成机理已经得到广泛研究,但针对其集合敏感性分析的研究却十分有限.集合敏感性分析是一种利用集合预报来估计模式预报对初始场敏感性的方法,可诊断极端天气过程的影响因子、对数值模式集合预报不确定性进行分析等.因此,针对“21.7”河南暴雨个例,利用WRF?ARW模式,结合集合初始条件与多物理过程以及物理过程扰动等方法,构建不同的区域模式集合预报.利用集合敏感性分析方法开展“21.7”河南暴雨的可预报性和影响该暴雨的因子分析.结果表明,“21.7”河南暴雨对初始条件的温度场、湿度场、风场和位势高度场扰动具有敏感性,增强郑州地区的气旋性环流、改变郑州上空的气温、降低郑州地区的气压、增强台风“烟花”的强度可以使此次暴雨的降水强度增强.本研究能够增进对“21.7”河南暴雨成因的理解,并改进集合预报.

关键词: 集合敏感性分析, 集合预报, 初始条件, 河南暴雨

Abstract:

The "21.7" extreme rainstorm in Zhengzhou,Henan Province,was a severe meteorological disaster that has occurred in China in recent years. The numerical models show significant uncertainty in this rainfall event,and there are deviations in the forecast of rainfall areas and intensity. Currently,the formation mechanism of the "21.7" Henan rainstorm has been widely studied,but research on its ensemble sensitivity analysis is very limited. Ensemble sensitivity analysis is a method that utilizes ensemble forecasts to estimate the sensitivity of model forecasts to initial conditions. It diagnoses the influencing factors of extreme weather processes and analyze the uncertainty of ensemble forecasts. Therefore,this study focuses on the individual case of the "21.7" Henan rainstorm,using the WRF?ARW model,combined with ensemble initial conditions,multi?physics,and model perturbations to construct serveral regional model ensemble forecasts. Ensemble sensitivity analysis is used to assess the predictability of the "21.7" Henan rainstorm and analyze the factors influencing this rainfall. The results show that the "21.7" Henan rainstorm is sensitive to the temperature field,humidity field,wind field,and geopotential height field perturbations of the initial conditions. Enhancing the cyclonic circulation in the Zhengzhou area,changing the temperature over Zhengzhou,reducing the air pressure in the Zhengzhou area,or strengthening the intensity of Typhoon In?Fa can enhance the precipitation intensity of this rainfall. This study improves understanding of the causes of the "21.7" Henan rainstorm and enhance ensemble forecasts.

Key words: ensemble sensitivity analysis, ensemble forecast, initial condition, Henan extremely heavy rainfall event

中图分类号: 

  • P456.7

图1

2021年7月18日00时(UTC+8,下同)至7月21日00时河南及其临近区域的累积降水量分布(单位:mm):(a)代表7月18日00时至7月19日00时24 h的累积降水量分布,(b)代表7月18日00时至7月20日00时48 h的累积降水量分布,(c)代表7月18日00时至7月21日00时72 h的累积降水量分布(红色星号代表郑州所在位置)"

图2

2021年7月18日00时至7月21日00时的累积降水量分布(单位:mm)The black crosses denote the locations of typhoon In?fa and typhoon Cempaka,respectively.The red asterisk represents the location of Zhengzhou."

The outer frame of (a) represents the d01 domain, with the inner gray solid line box representing the d02 domain. The red box in (b)"

集合敏感性试验设置"

试验名称区域与分辨率物理过程模式扰动
积云对流参数化边界层参数化
Exp_SD12 km单层网格MSKFYSU
Exp_ND12 km网格+2.4 km涡旋跟踪网格MSKFGFS EDMF
Exp_NDMPMSKF,KFeta

YSU,E–ε,MYNN

GFS EDMF

Exp_NDPBLPMSKFGFS EDMF边界层物理扰动
Exp_NDSPMSKFGFS EDMF边界层物理扰动,SPPT,SKEB,SPPT+SKEB
Exp_NDMPSPMSKF,KFeta

YSU,E–ε,MYNN,

GFS EDMF

边界层物理扰动,SPPT,SKEB,SPPT+SKEB

图4

2021年7月18日00时至7月21日00时河南郑州区域降水量曲线图(单位:mm)The two vertical black dashed lines represent the accumulated precipitation periods selected for the experiment."

图5

Exp_SD中预报响应函数J1对模式变量的敏感性The black crosses denote the locations of typhoon In?fa and typhoon Cempaka,respectively.The red asterisk represents the location of Zhengzhou."

图6

Exp_SD中预报响应函数J2对模式变量的敏感性The black crosses denote the locations of typhoon In?fa and typhoon Cempaka,respectively.The red asterisk represents the location of Zhengzhou."

图7

Exp_ND中预报响应函数J1对模式变量的敏感性The black crosses denote the locations of typhoon In?fa and typhoon Cempaka,respectively.The red asterisk represents the location of Zhengzhou."

图8

Exp_NDPBLP中预报响应函数J1对模式变量的敏感性The black crosses denote the locations of typhoon In?fa and typhoon Cempaka,respectively.The red asterisk represents the location of Zhengzhou."

图9

Exp_NDSP中预报响应函数J1对模式变量的敏感性The black crosses denote the locations of typhoon In?fa and typhoon Cempaka,respectively.The red asterisk represents the location of Zhengzhou."

图10

Exp_NDMP中预报响应函数J1对模式变量的敏感性The black crosses denote the locations of typhoon In?fa and typhoon Cempaka,respectively.The red asterisk represents the location of Zhengzhou."

1 栗晗,王新敏,朱枫. “21.7”河南极端暴雨多模式预报性能综合评估. 大气科学学报,2022,45(4):573-590.
Li H, Wang X M, Zhu F. Comprehensive evaluations of multi?model forecast performance of “21.7” Henan extreme rainstorm. Transactions of Atmospheric Sciences,2022,45(4):573-590.
2 Errico R M, Raeder K D, Fillion L. Examination of the sensitivity of forecast precipitation rates to possible perturbations of initial conditions. Tellus A:Dynamic Meteorology and Oceanography200355(1):88-105.
3 Hakim G J, Torn R D. Ensemble synoptic analysis. Meteorological Monographs200833(55):147-162.
4 Chu K K, Tan Z M. Mesoscale moist adjoint sensitivity study of a Mei?Yu heavy rainfall event. Advances in Atmospheric Sciences201027(6):1415-1424.
5 Errico R M. What is an adjoint model? Bulletin of the American Meteorological Society199778(11):2577-2592.
6 Ancell B, Hakim G J. Comparing adjoint? and ensemble?sensitivity analysis with applications to observation targeting. Monthly Weather Review2007135(12):4117-4134.
7 Ren S J, Lei L L, Tan Z M,et al. Multivariate ensemble sensitivity analysis for super typhoon Haiyan (2013). Monthly Weather Review2019147(9):3467-3480.
8 Torn R D, Hakim G J. Ensemble?based sensitivity analysis. Monthly Weather Review2008136(2):663-677.
9 Chang E K M, Zheng M H, Raeder K. Medium?range ensemble sensitivity analysis of two extreme Pacific extratropical cyclones. Monthly Weather Review2013141(1):211-231.
10 姚秀萍,李若莹. 河南“21.7”极端暴雨的研究进展. 气象学报,2023,81(6):853-865.
Yao X P, Li R Y. Progress in research of the July 2021 extreme precipitation event in Henan province,China. Acta Meteorologica Sinica202381(6):853-865.
11 National Centers for Environmental Prediction,National Weather Service,NOAA,et al. NCEP FNL operational model global tropospheric analyses,April 1997 through June 2007. Research Data Archive at the National Center1997. DOI:https://rda.ucar.edu/datasets/ds083.2/ .
12 Skamarock W C, Klemp J B, Dudhia J,et al. A description of the advanced research WRF model version 4.1. Technical Report. No. NCAR/TN?556+STR,Boulder:National Center for Atmospheric Research,2019:145.
13 Gaspari G, Cohn S E. Construction of correlation functions in two and three dimensions. Quarterly Journal of the Royal Meteorological Society1999125(554):723-757.
14 Hacker J P, Lei L L. Multivariate ensemble sensitivity with localization. Monthly Weather Review2015143(6):2013-2027.
15 崔晓鹏,杨玉婷. “21.7”河南暴雨水汽源地追踪和定量贡献分析. 大气科学,2022,46(6):1543-1556.
Cui X P, Yang Y T. Tracking and quantitative contribution analyses of moisture sources of rainstorm in Henan Province in July 2021. Chinese Journal of Atmospheric Sciences202246(6):1543-1556.
16 Hong S Y, Lim J O J. The WRF single?moment 6?class microphysics scheme (WSM6). Journal of the Korean Meteorological Society200642(2):129-151.
17 Thompson G, Rasmussen R M, Manning K. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I:Description and sensitivity analysis. Monthly Weather Review2004132(2):519-542.
18 Zheng Y, Alapaty K, Herwehe J A,et al. Improving high?resolution weather forecasts using the Weather Research and Forecasting (WRF) Model with an updated Kain–Fritsch scheme. Monthly Weather Review2016144(3):833-860.
19 Hong S Y, Noh Y, Dudhia J. A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review2006134(9):2318-2341.
20 Han J, Witek M L, Teixeira J,et al. Implementation in the NCEP GFS of a hybrid eddy?diffusivity mass?flux (EDMF) boundary layer parameterization with dissipative heating and modified stable boundary layer mixing. Weather and Forecasting201631(1):341-352.
21 Detering H W, Etling D. Application of the E?ε turbulence model to the atmospheric boundary layer. Boundary?Layer Meteorology198533(2):113-133.
22 Olson J B, Smirnova T, Kenyon J S,et al. A description of the MYNN surface?layer scheme. NOAA Technical Memorandum OAR GSL?67,Boulder:National Oceanic and Atmospheric Administration,2021.
23 Jiménez P A, Dudhia J, González?Rouco J F,et al. A revised scheme for the WRF surface layer formulation. Monthly Weather Review2012140(3):898-918.
24 Mlawer E J, Taubman S J, Brown P D,et al. Radiative transfer for inhomogeneous atmospheres:RRTM,a validated correlated?K model for the longwave. Journal of Geophysical Research:Atmospheres1997102(D14):16663-16682.
25 Ek M B, Mitchell K E, Lin Y,et al. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. Journal of Geophysical Research:Atmospheres2003108(D22):8851.
26 Palmer T N, Buizza R, Doblas?Reyes F,et al. Stochastic parametrization and model uncertainty. Shinfield Park:European Centre for Medium?Range Weather Forecasts,2009.
27 Shutts G. A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quarterly Journal of the Royal Meteorological Society2005131(612):3079-3102.
28 Lei L L, Ge Y J X, Tan Z M,et al. Evaluation of a regional ensemble data assimilation system for typhoon prediction. Advances in Atmospheric Sciences202239(11):1816-1832.
29 Whitaker J S, Hamill T M, Wei X,et al. Ensemble data assimilation with the NCEP global forecast system. Monthly Weather Review2008136(2):463-482.
30 Torn R D, Hakim G J, Snyder C. Boundary conditions for limited?area ensemble Kalman filters. Monthly Weather Review2006134(9):2490-2502.
[1] 张心怡, 张熠, 刘昊炎, 王其伟, 王迪. 模拟启动时间和双台风对“21.7”河南极端暴雨事件的影响研究[J]. 南京大学学报(自然科学版), 2024, 60(2): 194-208.
[2] 廉丹华, 袁慧玲, 王婧羽, 陈法敬. 河南“21.7”特大暴雨的区域集合预报检验和预报偏差分析[J]. 南京大学学报(自然科学版), 2024, 60(2): 287-300.
[3] 李嘉鹏,汤剑平**

. WRF模式对中国东南地区的多参数化短期集合预报试验*[J]. 南京大学学报(自然科学版), 2012, 48(6): 677-688.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!