南京大学学报(自然科学), 2023, 59(6): 1077-1084 doi: 10.13232/j.cnki.jnju.2023.06.017

乙基纤维素电纺纤维调控PDMS/CNT柔性复合材料性能的研究

王鼎, 许睿, 何磊, 窦柳皓, 崔举庆,, 冯富奇, 刘方方

南京林业大学材料科学与工程学院,南京,210037

Properties of PDMS/CNT flexible composite materials improved with ethyl cellulose electrospinning fiber

Wang Ding, Xu Rui, He Lei, Dou Liuhao, Cui Juqing,, Feng Fuqi, Liu Fangfang

School of Materials Science and Engineering,Nanjing Forestry University,Nanjing, 210037,China

通讯作者: E⁃mail:cuijq@njfu.edu.cn

收稿日期: 2023-10-24  

基金资助: 国家自然科学基金.  31470590

Received: 2023-10-24  

摘要

研究了乙基纤维素(EC)电纺纤维调控PDMS/CNT柔性复合材料的力学和电学性能.结果表明,引入电纺EC纤维后,PDMS/CNT柔性复合材料的拉伸强度从1.73 MPa提高至3.97 MPa,断裂应变由86.56%提高到115.00%,韧性由0.61 MJ·m-3提高到1.58 MJ·m-3;有缺口PDMS/CNT柔性复合材料的拉伸强度从0.34 MPa提高至1.57 MPa,断裂应变由18.85%提高到27.54%,韧性由0.04 MJ·m-3提高到0.27 MJ·m-3;导电电阻由550 kΩ下降至228 kΩ,导电性上升.基于EC电纺纤维调控的PDMS/CNT复合材料组装的应力传感器灵敏度和循环稳定性获得了有效提升,引入1 wt% EC电纺纤维后,柔性应力传感器的灵敏度从0.341 kPa-1提高至4.922 kPa-1,提升了14倍,引入电纺EC纤维后的传感器循环电阻变化率曲线变得相对更加规整,异常波动更小.

关键词: PDMS ; 乙基纤维素 ; 碳纳米管 ; 电纺纤维 ; 柔性应力传感器

Abstract

In this paper,the mechanical and electrical properties of PDMS/CNT flexible composites controlled by ethyl cellulose (EC) electrospun fiber were studied. The results showed that after the introduction of electrospun EC fibers,the tensile strength of PDMS/CNT flexible composite materials increased from 1.73 MPa to 3.97 MPa,the fracture strain increased from 86.56% to 115.00%,and the toughness increased from 0.61 MJ·m-3 to 1.58 MJ·m-3; The tensile strength of the notched PDMS/CNT flexible composite material increased from 0.34 MPa to 1.57 MPa,the fracture strain increased from 18.85% to 40.12%,and the toughness increased from 0.04 MJ·m-3 to 0.27 MJ·m-3; The conductive resistance decreased from 550 kΩ to 228 kΩ,and the conductivity increased. The stress sensor sensitivity and cyclic stability of PDMS/CNT composite material assembly based on EC electrospun fiber regulation have been effectively improved. After introducing 1 wt% EC electrospun fiber,the sensitivity of the flexible stress sensor has been increased from 0.341 kPa-1 to 4.922 kPa-1,a 14 fold increase,after the introduction of electrospun EC fibers,the cyclic resistance change rate curve of the sensor becomes relatively more regular,with less abnormal fluctuations.

Keywords: PDMS ; ethyl cellulose ; carbon nanotubes ; electrospun fibers ; flexible stress sensors

PDF (1274KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王鼎, 许睿, 何磊, 窦柳皓, 崔举庆, 冯富奇, 刘方方. 乙基纤维素电纺纤维调控PDMS/CNT柔性复合材料性能的研究. 南京大学学报(自然科学)[J], 2023, 59(6): 1077-1084 doi:10.13232/j.cnki.jnju.2023.06.017

Wang Ding, Xu Rui, He Lei, Dou Liuhao, Cui Juqing, Feng Fuqi, Liu Fangfang. Properties of PDMS/CNT flexible composite materials improved with ethyl cellulose electrospinning fiber. Journal of nanjing University[J], 2023, 59(6): 1077-1084 doi:10.13232/j.cnki.jnju.2023.06.017

随着社会的发展,柔性电子器件的应用场景越来越多,柔性应力传感器是柔性电子器件的重要组成部分,相对于传统刚性应力传感器,柔性应力传感器具有更大的灵活性,是在一定形变条件(拉伸、压缩、弯曲、折叠、扭转等)下仍可正常工作的柔性电子器件,在对形变要求高的使用场景中有着显著的优势,因此受到广泛的关注和研究1-2.当前,柔性应力传感器的研究取得了长足的进步,柔性应力传感器已广泛应用于人与机器人交互界面的触觉感知、医疗健康领域的生理信号健康监测、指纹识别等领域3-9.

碳基柔性导电复合材料是目前电阻式柔性应力传感器传感层的良好选择,其性能对提升电阻式柔性应力传感器性能至关重要10-18.然而,碳基柔性导电复合材料中导电填料分散性差,易团聚,制约着柔性导电复合材料的力学性能和导电性,进而影响着柔性应力传感器性能19-25.本文的研究目的是制备电纺乙基纤维素(EC)纤维,通过电纺乙基纤维的含量调控PDMS/CNT柔性导电复合材料的力学和导电性能,利用电纺EC纤维的含量调控PDMS/CNT柔性应力传感器的灵敏度、循环稳定性.

1 材料与方法

1.1 实验试剂

乙基纤维素(EC),Aladdin Industrial Corporation;四氢呋喃(THF),南京化学试剂股份有限公司;N,N⁃二甲基乙酰胺(DMAc),上海麦克林生化科技有限公司;多壁碳纳米管(MWCNT),深圳市纳米港有限公司;十二烷基硫酸钠(SDS),上海麦克林生化科技有限公司;正己烷,南京化学试剂股份有限公司;聚二甲基硅氧烷(PDMS),道康宁;导电膏,武汉长电化学科技有限公司;导电银丝,昆山秋凤源新材料有限公司.

1.2 实验方法

1.2.1 乙基纤维素电纺纤维制备

首先采用溶剂比(THF∶DMAc)为5∶5的混合溶剂配制浓度为10 wt%的EC电纺液,用自制的纺丝设备进行电纺.在纺丝电压为17 kV、电纺液推进速度为0.2 mL·h-1、接收辊转速为400 r·min-1、纺丝间距为20 cm的条件下电纺.将获得的EC电纺纤维置于80 ℃烘箱干燥4 h,备用.

1.2.2 PDMS基柔性复合材料制备

首先称取适量干燥好的改性CNT粉末放入干燥的烧杯中,然后加入一定量的正己烷,用磁力搅拌器搅拌30 min,使其初步分散,再用超声波清洗器超声分散1 h,将其进一步分散.向CNT与正己烷的混合溶液中加入适量的PDMS主剂,在通风橱内继续搅拌,待混合溶液中正己烷挥发完全以后再加入PDMS固化剂(加入PDMS主剂与固化剂的质量比为10∶1),继续搅拌30 min后,将混合溶液倒入聚四氟乙烯(PTFE)的模具中,并放入真空箱中进行去除气泡处理.除泡后,将事先称好质量的电纺EC纤维平整放入模具中,再次放入真空箱进行除气泡处理.处理之后将装有复合材料的模具放置于通风橱内,通风挥发正己烷12 h.最后将样品放入80 ℃烘箱中固化4 h.

1.2.3 柔性应力传感器的制备

将固化后的电纺EC纤维/PDMS/CNT柔性复合材料从模具中取出,裁剪成长与宽分别为50 mm和15 mm、厚度为(0.6±0.1) mm的试样.然后,将导电膏均匀地涂抹在试样两端,并将导电银线固定在导电膏上,随后放入80 ℃烘箱中固化6 h,待电极完全固化后,用创可贴封装处理.

1.3 表征及测试
1.3.1 SEM

将烘干的表面良好的电纺EC纤维膜剪制成1 cm×1 cm的样品贴于导电胶上完成制样,然后对试样进行喷金处理,喷金完成后将其置于Quanta 200型环境扫描电子显微镜的试样扫描台上,利用计算机对其进行统一放大倍数的观察和拍摄.将经SEM放大拍摄处理的电镜图,导入ImageJ处理软件,从图中选取200根左右的电纺纳米纤维进行直径的测量.

1.3.2 力学性能

电纺EC纤维/PDMS/CNT柔性复合材料制样:试样尺寸为80 mm×15 mm,厚度为(0.6±0.1) mm.将试样用三思万能力学试验机的力学传感器夹具夹紧,标距为30 mm.单向拉伸测试时,设置试验机拉向的拉伸速度为20 mm·min-1.动态循环拉伸测试时,设置试验机拉伸和恢复的速度均为10 mm·min-1,循环拉伸的固定应变为5%.试样切口为3 mm.

1.3.3 电学性能

将导线分别固定在试样两端,然后将导线的另一端连接到Keithley 20000E数字万用表上,再将数字万用表的信号接入计算机,接通电源,开启软件,测量导电电阻.

1.3.4 柔性应力传感器传感性能

将尺寸为80 mm×20 mm、厚度为(2±0.1) mm的电纺EC纤维/PDMS/CNT柔性应力传感器试样夹紧安置在三思万能力学试验机的力学传感器夹具内,标距为30 mm.将导电银线连接到Keithley 20000E数字万用表电笔上,并将数字万用表的信号输入计算机.设置力学试验机为拉向,拉伸速度为20 mm·min-1,启动仪器测试程序,获取柔性应力传感器在不断拉伸下的实时电阻值.处理数据获得灵敏度性能.同样,将相同尺寸参数的柔性应力传感器按上述方式安装和连接仪器后,设置力学拉力机为循环程控方式,循环100次,速度为10 mm·min-1,应变为5%.启动仪器测试程序,获取柔性应力传感器在循环拉伸下的实时电阻值.处理数据获得循环稳定性.

2 结果与讨论

2.1 乙基纤维素电纺纤维形貌和直径研究

图1a和图1b分别是浓度为10 wt%、溶剂比为5∶5的纺丝液在电压为17 kV、纺丝液推进速度为0.2 mL·h-1、接收辊转速是400 r·min-1的条件下制备的电纺纤维的形貌和直径分布统计图.研究发现质量浓度为10 wt%,溶剂比为5∶5的纺丝液可以电纺获得连续光滑的EC电纺纤维.

图1

图1   乙基纤维素电纺纤维形貌和直径分布图

Fig.1   Morphology and diameter distribution of ethyl cellulose electrospun fibers


2.2 乙基纤维素电纺纤维含量对PDMS/CNT柔性复合材料力学性能的影响

图2是电纺EC纤维含量调控PDMS/CNT复合材料的应力⁃应变曲线,详细的力学性能数据列于表1中.从图2表1可以得出,当PDMS/CNT柔性导电复合材料中CNT含量不变,电纺EC纤维的含量从空白逐渐增加到5 wt%时,其力学性能显著增加.与PDMS/CNT⁃7复合材料的拉伸强度相比,PDMS/CNT⁃7/ECNF⁃5复合材料的拉伸强度上升3.97 MPa,韧性上升1.58 MJ·m-3,大约相当于PDMS/CNT⁃7复合材料的2.3~2.5倍.这是因为复合材料在被拉伸的过程中,负载通过连续的电纺EC纤维再转移到PDMS基质上,电纺EC纤维分担了负载,而PDMS基质却没有分担太大的负载;同时,电纺EC纤维在整个基体中分布均匀,连续的电纺纳米纤维断裂需要消耗能量,并且纤维之间以及纤维与基质之间的摩擦也有助于延迟复合材料的破坏.因此,电纺EC纤维的引入可以提高PDMS/CNT复合材料的强度和韧性.

图2

图2   电纺EC纤维含量调控PDMS/CNT复合材料的应力⁃应变曲线

Fig.2   Stress⁃strain curve of PDMS/CNT composite material regulated by electrospun EC fibers content


表1   电纺EC纤维含量调控PDMS/CNT复合材料的力学性能

Table 1  Mechanical properties of PDMS/CNT composite materials regulated by electrospun EC fibers content

样品

拉伸强度

(MPa)

断裂应变

韧性

(MJ·m-3

PDMS/CNT⁃71.7386.56%0.61
PDMS/CNT⁃7/ECNF⁃12.46115.00%1.30
PDMS/CNT⁃7/ECNF⁃33.0999.42%1.44
PDMS/CNT⁃7/ECNF⁃53.9797.80%1.58

新窗口打开| 下载CSV


图3是电纺EC纤维含量调控有缺口的PDMS/CNT复合材料的应力⁃应变曲线,详细的力学性能数据列于表2中.从图3表2可以得出,当PDMS/CNT复合材料中CNT含量不变,电纺EC纤维含量逐渐增加时,其抗断裂性能总体也得到显著的提升.其中电纺EC纤维含量为5 wt%时,其拉伸强度上升至1.57 MPa、断裂应变上升至25.40%、韧性上升到0.27 kJ·m-3,分别是不含电纺纤维的PDMS/CNT复合材料的4.6,1.3,6.8倍.这是因为当将负载施加到复合材料上时,应力从裂缝的前端传递到整个电纺纤维网络中,并耗散大量能量.电纺EC纤维的存在,使预切割的裂纹发生偏离,并且纤维与基体之间的摩擦有助于延迟复合材料的破坏.因此,复合材料中电纺EC纳米纤维的存在可以提高复合材料的强度和韧性,改善复合材料的抗断裂性能.

图3

图3   电纺EC纤维含量调控PDMS/CNT复合材料的应力⁃应变曲线(有缺口)

Fig.3   Stress⁃strain curve of PDMS/CNT composite material regulated by electrospun EC fibers content (with notch)


表2   电纺EC纤维含量调控PDMS/CNT复合材料的抗断裂性能

Table 2  The fracture resistance of PDMS/CNT composite materials regulated by electrospun EC fibers content

样品

拉伸强度

(MPa)

断裂应变

韧性

(kJ·m-3

PDMS/CNT⁃70.3418.85%0.04
PDMS/CNT⁃7/ECNF⁃10.7819.60%0.11
PDMS/CNT⁃7/ECNF⁃31.4227.54%0.26
PDMS/CNT⁃7/ECNF⁃51.5725.40%0.27

新窗口打开| 下载CSV


2.3 乙基纤维素电纺纤维含量对PDMS/CNT柔性复合材料电学性能的影响

图4是电纺EC纤维含量调控PDMS/CNT复合材料的导电电阻曲线.由图可知,与没添加电纺EC纤维的PDMS/CNT复合材料相比,添加了电纺EC纤维的复合材料的导电电阻下降,导电性能提升.当复合材料中电纺EC纤维的含量为1 wt%时,电阻从550 kΩ下降到228 kΩ.当复合材料中电纺EC纤维的含量为3 wt%时,电阻从228 kΩ上升至264 kΩ,但电阻仍低于未添加电纺EC纤维时的复合材料.当复合材料中电纺EC纤维的含量为5 wt%时,电阻从264 kΩ上升至361 kΩ,仍低于未添加电纺EC纤维的复合材料.因为复合材料中添加的电纺EC纤维有效地促进其内部CNT导电填料的分散,促进导电网络的搭建,所以导电电阻下降,导电性能提升.但由于电纺EC纤维本身的不导电性,所以在添加的电纺EC纤维含量从1 wt%逐渐增加到5 wt%时,PDMS/CNT复合材料的导电电阻有了一定的增大,导电性能下降.但总体上添加了电纺EC纤维的复合材料导电性能均得到了提高,并且添加含量为1 wt%的电纺EC纤维的复合材料导电性能最好.

图4

图4   电纺EC纤维含量调控PDMS/CNT复合材料的导电电阻

Fig.4   Conductive resistance of PDMS/CNT composite materials regulated by electrospun EC fibers content


2.4 乙基纤维素电纺纤维含量对PDMS/CNT柔性应力传感器传感性能的影响

图5是电纺EC纤维含量调控PDMS/CNT柔性应力传感器灵敏度曲线,其中图5a~d分别是引入0,1 wt%,3 wt%,5 wt%电纺EC纤维制备增强的PDMS/CNT柔性应力传感器的灵敏度.

图5

图5   电纺EC纤维含量调控PDMS/CNT柔性应力传感器灵敏度:(a) EC纤维含量为0;(b) EC纤维含量为1 wt%;

(c) EC纤维含量为3 wt%;(d) EC纤维含量为5 wt%

Fig.5   Sensitivity of PDMS/CNT flexible stress sensor regulated by electrospun EC fibers content: (a) EC fibers content is 0,(b) EC fibers content is 1 wt%,(c) EC fibers content is 3 wt%,(d) EC fibers content is 5 wt%


由图可知,随着引入传感器的电纺EC纤维含量增加,柔性应力传感器的灵敏度呈现先上升后下降的趋势,且应力有效测量范围上升.从图5a中可以看出,当不引入电纺EC纤维时,传感器灵敏度总体呈现从小变大再变小的现象.这是因为柔性应力传感器材料内部CNT团聚,分布不均,开始拉伸的一段时间内材料内部CNT团聚多,导致其导电电阻在拉伸的情况下变化不明显,所以刚开始拉伸时灵敏度较小;随着拉伸的持续,材料内部CNT间距迅速增大,导电网络加快断裂,动态电阻R增幅加大、增速加快,灵敏度上升;当应力达到120 kPa时,复合材料内部导电网络稀疏,断裂速度相对放缓,实时电阻R增速放缓、增幅减小,灵敏度从而下降.

图5b可以看出,当柔性应力传感器引入1 wt%电纺EC纤维时,传感器灵敏度变化区间分为两个阶段:当P<140 kPa时,灵敏度为1.625 kPa-1;当140 kPa<P<210 kPa时,灵敏度为4.922 kPa-1.和没有引入电纺EC纤维的PDMS/CNT⁃7柔性应力传感器的灵敏度相比,引入了1 wt%电纺EC纤维的传感器的灵敏度得到提升,从原来P<140 kPa时的最高1.534 kPa-1提升至1.625 kPa-1.电纺EC纤维/PDMS/CNT柔性应力传感器应力有效测量范围相较于未引入电纺EC纤维的柔性应力传感器的140 kPa也上升到了210 kPa,填补了PDMS/CNT⁃7柔性应力传感器140 kPa<P<210 kPa没有灵敏度的空白,并且大幅提升至4.922 kPa-1.这是因为电纺EC纤维的引入改善了CNT在导电材料中的分散效果,形成了更加稳定、完整的导电网络,从而出现在P<140 kPa时,电阻R连续、稳定,且变化明显,灵敏度比不加电纺纤维的传感器的高.此外,140 kPa<P<210 kPa时,没有引入电纺EC纤维的传感器的导电网络已经断开破裂,不具备灵敏性,引入电纺EC纤维的传感器具有更好的强度和韧性,能稳定传感器在更大应力作用下导电网络的完整,进而实现电阻连续变化,但此时导电网络也开始加速断裂,导致电阻增大速度显著上升,对应了灵敏度此时大幅上升至4.922 kPa-1的现象.

图5c和图5d中可以看出,随着传感器引入电纺EC纤维的含量从3 wt%增加至5 wt%,传感器的应力有效检测范围大幅提升,但灵敏度却呈现下降趋势.这是因为电纺纤维本身具有良好的拉伸强度,增强了PDMS/CNT导电复合材料的力学性能,传感器在大应力的作用下,其内部导电网络依旧保持完整,继续导电.但是,由于电纺EC纤维本身的不导电特性以及传感材料中CNT含量一定,随着传感器中引入电纺EC纤维含量的增加,传感器内部导体电阻开始增加、导电网络减弱、相对电阻变化率降低,进而产生灵敏度下降、有效量程变大的现象.综上所述,引入1 wt%含量的电纺EC纤维能够有效提升PDMS/CNT柔性应力传感器的灵敏度性能,其灵敏度从0.341 kPa-1提升至4.922 kPa-1,增高约14倍.

图6是电纺EC纤维含量调控PDMS/CNT柔性应力传感器循环稳定性曲线.其中图6a~d分别是引入0,1 wt%,3 wt%,5 wt%电纺EC纤维制备增强PDMS/CNT柔性应力传感器在5%应变下循环拉伸的电阻变化率图.观察图中的循环电阻变化率,可以得到,和没有引入电纺EC纤维的PDMS/CNT柔性应力传感器比较,引入电纺EC纤维制备增强的PDMS/CNT柔性应力传感在循环拉伸过程中电阻变化率R/R0周期性规律增强,电阻变化率总体更加平稳、波动性小,引入电纺EC纤维的柔性应力传感器具备较好的循环稳定性.这是因为电纺EC纤维的引入改善了导电复合材料内部CNT的分散,材料内部形成了更加稳健的导电网络,进而柔性应力传感器在被循环拉伸时,其内部导电网络不易被破坏而呈现出更规律的电阻变化曲线.从图6a~d中首尾电阻变化率可以看出,分别引入0,1 wt%,3 wt%,5 wt%电纺EC纤维制备增强PDMS/CNT柔性应力传感器的电阻变化率的幅度分别从15%,30%,15%,8%衰减到了10%,20%,10%,5%,呈现先大后小的趋势,反映出PDMS/CNT/ECNF柔性应力传感器稳定性的不足.这是因为传感器在被循环拉伸的过程中,随机排列的电纺EC纤维断裂易位,引起材料内部导电网络断裂,进而导致电阻变化率的幅度逐渐下降.此外,引入1 wt%电纺EC纤维制备增强的柔性应力传感器的电阻变化率幅度达到30%,引入5 wt%电纺EC纤维制备增强的柔性应力传感器的电阻变化率幅度为8%,表明引入1 wt%电纺EC纤维制备增强的柔性应力传感器在5%应变拉伸下敏感性更强,这是因为电纺EC纤维具有不导电性,当引入量增多时,柔性导电复合材料的电阻必然增大、导电阈值升高、灵敏性降低,进而引发电阻变化率幅度降低.可以得出引入1 wt%电纺EC纤维,对提升传感器循环稳定性更有利.

图6

图6   电纺EC纤维含量调控PDMS/CNT柔性应力传感器循环稳定性:(a) EC纤维含量为0;(b) EC纤维含量为1 wt%;

(c) EC纤维含量为3 wt%;(d) EC纤维含量为5 wt%

Fig.6   Cyclic stability of PDMS/CNT flexible stress sensor regulated by electrospun EC fibers content:

(a) EC fibers content is 0,(b) EC fibers content is 1 wt%,(c) EC fibers content is 3 wt%,(d) EC fibers content is 5 wt%


3 结论

(1)纺丝液浓度为10 wt%、溶剂比为5∶5时,在电压为17 kV、纺丝液推进速度为0.2 mL·h-1、接收辊转速为400 r·min-1的条件下可以纺出形貌光滑无串珠、直径小、粗细分布更均匀的乙基纤维素电纺纤维.

(2)引入电纺EC纤维有利于提高复合材料的强度和韧性,改善复合材料的抗断裂性能.

(3)引入电纺EC纤维有利于复合材料导电性能提升,其导电电阻由550 kΩ下降至228 kΩ.

(4)引入1 wt%含量的电纺EC纤维能够有效提升PDMS/CNT柔性应力传感器的灵敏度.柔性应力传感器的灵敏度由0.341 kPa-1提高至4.922 kPa-1,增高~14倍.

(5)引入电纺EC纤维,能有效提升传感器的循环稳定性,传感器循环电阻变化率曲线变得相对更加规整,异常波动更小.

参考文献

Gao WOta HKiriya Det al.

Flexible electronics toward wearable sensing

Accounts of Chemical Research,201952(3):523-533.

[本文引用: 1]

谢丽萍向大龙王仁乔,.

柔性可穿戴应力传感器的研究进展

科学技术与工程,202121(20):8301-8309.

[本文引用: 1]

Xie L PXiang D LWang R Qet al.

Progress of flexible wearable stress sensors

Progress of Flexible Wearable Stress Sensors,202121(20):8301-8309.

[本文引用: 1]

Huang YFan X YChen S Cet al.

Emerging technologies of flexible pressure sensors: Materials,modeling,devices,and manufacturing

Advanced Functional Materials,201929(12):1808509.

[本文引用: 1]

Liang Z WCheng J HZhao Qet al.

Tactile sensors:High‐performance flexible tactile sensor enabling intelligent haptic perception for a soft prosthetic hand

Advanced Materials Technologies,20194(8):1970041.

Kim J SLee S CHwang Jet al.

Iontronic graphene tactile sensors: Enhanced sensitivity of iontronic graphene tactile sensors facilitated by spreading of ionic liquid pinned on graphene grid

Advanced Functional Materials,202030(14):2070089.

Meng K YWu Y FHe Qet al.

Ultrasensitive fingertip⁃contacted pressure sensors to enable continuous measurement of epidermal pulse waves on ubiquitous object surfaces

ACS Applied Materials & Interfaces,201911(50):46399-46407.

Liu M MPu XJiang C Yet al.

Large⁃area all⁃textile pressure sensors for monitoring human motion and physiological signals

Advanced Materials,201729(41):1703700.

Wang Y CChen J NMei D Q.

Recognition of surface texture with wearable tactile sensor array:A pilot study

Sensors and Actuators A:Physical,2020(307):111972.

Kumar A.

Methods and materials for smart manufacturing:Additive manufacturing,internet of things,flexible sensors and soft robotics

Manufacturing Letters,2018(15):122-125.

[本文引用: 1]

Badrul FHalim K A ASalleh M A A Met al.

Preliminary investigation on the correlation between mechanical properties and conductivity of low⁃density polyethylene/carbon black (LDPE/CB) conductive polymer composite (CPC)

Journal of Physics:Conference Series,20222169(1):012020.

[本文引用: 1]

Chang M RLi Y LXu Let al.

A novel assembled carbon black/carbon nanotubes (CB/MWCNT) nano⁃structured composite for pressure⁃sensitive conductive silicon rubber (SR)

Journal of Materials Science:Materials in Electronics,201829(4):2716-2724.

Wang Z FJiang R JLi G Met al.

Flexible dual⁃mode tactile sensor derived from three⁃dimensional porous carbon architecture

ACS Applied Materials & Interfaces,20179(27):22685-22693.

Sacco L NVollebregt S.

Overview of engineering carbon nanomaterials such as carbon nanotubes (CNTs),carbon nanofibers (CNFs),graphene and nanodiamonds and other carbon allotropes inside porous anodic alumina (PAA) templates

Nanomaterials,202313(2):260.

Kareem M HHussein A M AHussein H T.

Preparation high quality ethanol gas sensor by modifying porous silicon (PS) surface with carbon nanotube (CNTs)

Optik,2022(259):168826.

Gao J FLi BHuang X Wet al.

Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene⁃decorated electrospun nanofibers for human motion monitoring

Chemical Engineering Journal,2019373298-306.

Guo S ZLin Y PLian Z Qet al.

A label⁃free ultrasensitive microRNA⁃21 electrochemical biosensor based on MXene (Ti3C2)⁃reduced graphene oxide⁃Au nanocomposites

Microchemical Journal,2023190108656.

张彪. 基于导电结构构建的纳米碳/硅橡胶复合材料压阻特性研究. 博士学位论文. 武汉华中科技大学2017.

Zhang B. Research on piezoresistive performance of nanocarbons/silicone rubber composites based on conductive structure construction. Ph.D. Dissertation. WuhanHuazhong University of Science and Technology2017.

Jason N NHo M DCheng W L.

Resistive electronic skin

Journal of Materials Chemistry C,20175(24):5845-5866.

[本文引用: 1]

Duan L YSpoerk MWieme Tet al.

Designing formulation variables of extrusion⁃based manu⁃facturing of carbon black conductive polymer composites for piezoresistive sensing

Composites Science and Technology,2019(171):78-85.

[本文引用: 1]

Zhan P FZhai WWang Net al.

Electrically conductive carbon black/electrospun polyamide 6/poly(vinyl alcohol) composite based strain sensor with ultrahigh sensitivity and favorable repeatability

Materials Letters,2019(236):60-63.

Alshammari B AAl⁃Mubaddel F SKarim M Ret al.

Addition of graphite filler to enhance electrical,morphological,thermal,and mechanical properties in poly (ethylene terephthalate):Experimental charac⁃terization and material modeling

Polymers,201911(9):1411.

Cui X HChen J WZhu Y Tet al.

Natural sunlight⁃actuated shape memory materials with reversible shape change and self⁃healing abilities based on carbon nanotubes filled conductive polymer composites

Chemical Engineering Journal,2020(382):122823.

Chen J WLi HYu Q Zet al.

Strain sensing behaviors of stretchable conductive polymer composites loaded with different dimensional conductive fillers

Composites Science and Technology,2018(168):388-396.

Zheng Y JLi Y LDai Ket al.

Conductive thermoplastic polyurethane composites with tunable piezoresistivity by modulating the filler dimen⁃sionality for flexible strain sensors

Composites Part A:Applied Science and Manufacturing,201710141-49.

Yamada THayamizu YYamamoto Yet al.

A stretchable carbon nanotube strain sensor for human⁃motion detection

Nature Nanotechnology,20116(5):296-301.

[本文引用: 1]

/