南京大学学报(自然科学版) ›› 2023, Vol. 59 ›› Issue (6): 1077–1084.doi: 10.13232/j.cnki.jnju.2023.06.017

• • 上一篇    

乙基纤维素电纺纤维调控PDMS/CNT柔性复合材料性能的研究

王鼎, 许睿, 何磊, 窦柳皓, 崔举庆(), 冯富奇, 刘方方   

  1. 南京林业大学材料科学与工程学院,南京,210037
  • 收稿日期:2023-10-24 出版日期:2023-11-30 发布日期:2023-12-06
  • 通讯作者: 崔举庆 E-mail:cuijq@njfu.edu.cn
  • 基金资助:
    国家自然科学基金(31470590)

Properties of PDMS/CNT flexible composite materials improved with ethyl cellulose electrospinning fiber

Ding Wang, Rui Xu, Lei He, Liuhao Dou, Juqing Cui(), Fuqi Feng, Fangfang Liu   

  1. School of Materials Science and Engineering,Nanjing Forestry University,Nanjing, 210037,China
  • Received:2023-10-24 Online:2023-11-30 Published:2023-12-06
  • Contact: Juqing Cui E-mail:cuijq@njfu.edu.cn

摘要:

研究了乙基纤维素(EC)电纺纤维调控PDMS/CNT柔性复合材料的力学和电学性能.结果表明,引入电纺EC纤维后,PDMS/CNT柔性复合材料的拉伸强度从1.73 MPa提高至3.97 MPa,断裂应变由86.56%提高到115.00%,韧性由0.61 MJ·m-3提高到1.58 MJ·m-3;有缺口PDMS/CNT柔性复合材料的拉伸强度从0.34 MPa提高至1.57 MPa,断裂应变由18.85%提高到27.54%,韧性由0.04 MJ·m-3提高到0.27 MJ·m-3;导电电阻由550 kΩ下降至228 kΩ,导电性上升.基于EC电纺纤维调控的PDMS/CNT复合材料组装的应力传感器灵敏度和循环稳定性获得了有效提升,引入1 wt% EC电纺纤维后,柔性应力传感器的灵敏度从0.341 kPa-1提高至4.922 kPa-1,提升了14倍,引入电纺EC纤维后的传感器循环电阻变化率曲线变得相对更加规整,异常波动更小.

关键词: PDMS, 乙基纤维素, 碳纳米管, 电纺纤维, 柔性应力传感器

Abstract:

In this paper,the mechanical and electrical properties of PDMS/CNT flexible composites controlled by ethyl cellulose (EC) electrospun fiber were studied. The results showed that after the introduction of electrospun EC fibers,the tensile strength of PDMS/CNT flexible composite materials increased from 1.73 MPa to 3.97 MPa,the fracture strain increased from 86.56% to 115.00%,and the toughness increased from 0.61 MJ·m-3 to 1.58 MJ·m-3; The tensile strength of the notched PDMS/CNT flexible composite material increased from 0.34 MPa to 1.57 MPa,the fracture strain increased from 18.85% to 40.12%,and the toughness increased from 0.04 MJ·m-3 to 0.27 MJ·m-3; The conductive resistance decreased from 550 kΩ to 228 kΩ,and the conductivity increased. The stress sensor sensitivity and cyclic stability of PDMS/CNT composite material assembly based on EC electrospun fiber regulation have been effectively improved. After introducing 1 wt% EC electrospun fiber,the sensitivity of the flexible stress sensor has been increased from 0.341 kPa-1 to 4.922 kPa-1,a 14 fold increase,after the introduction of electrospun EC fibers,the cyclic resistance change rate curve of the sensor becomes relatively more regular,with less abnormal fluctuations.

Key words: PDMS, ethyl cellulose, carbon nanotubes, electrospun fibers, flexible stress sensors

中图分类号: 

  • O632.6

图1

乙基纤维素电纺纤维形貌和直径分布图"

图2

电纺EC纤维含量调控PDMS/CNT复合材料的应力?应变曲线"

表1

电纺EC纤维含量调控PDMS/CNT复合材料的力学性能"

样品

拉伸强度

(MPa)

断裂应变

韧性

(MJ·m-3

PDMS/CNT⁃71.7386.56%0.61
PDMS/CNT⁃7/ECNF⁃12.46115.00%1.30
PDMS/CNT⁃7/ECNF⁃33.0999.42%1.44
PDMS/CNT⁃7/ECNF⁃53.9797.80%1.58

图3

电纺EC纤维含量调控PDMS/CNT复合材料的应力?应变曲线(有缺口)"

表2

电纺EC纤维含量调控PDMS/CNT复合材料的抗断裂性能"

样品

拉伸强度

(MPa)

断裂应变

韧性

(kJ·m-3

PDMS/CNT⁃70.3418.85%0.04
PDMS/CNT⁃7/ECNF⁃10.7819.60%0.11
PDMS/CNT⁃7/ECNF⁃31.4227.54%0.26
PDMS/CNT⁃7/ECNF⁃51.5725.40%0.27

图4

电纺EC纤维含量调控PDMS/CNT复合材料的导电电阻"

图5

电纺EC纤维含量调控PDMS/CNT柔性应力传感器灵敏度:(a) EC纤维含量为0;(b) EC纤维含量为1 wt%;(c) EC纤维含量为3 wt%;(d) EC纤维含量为5 wt%"

图6

电纺EC纤维含量调控PDMS/CNT柔性应力传感器循环稳定性:(a) EC纤维含量为0;(b) EC纤维含量为1 wt%;(c) EC纤维含量为3 wt%;(d) EC纤维含量为5 wt%"

1 Gao W, Ota H, Kiriya D,et al. Flexible electronics toward wearable sensing. Accounts of Chemical Research201952(3):523-533.
2 谢丽萍,向大龙,王仁乔,等. 柔性可穿戴应力传感器的研究进展. 科学技术与工程202121(20):8301-8309.
Xie L P, Xiang D L, Wang R Q,et al. Progress of flexible wearable stress sensors. Progress of Flexible Wearable Stress Sensors202121(20):8301-8309.
3 Huang Y, Fan X Y, Chen S C,et al. Emerging technologies of flexible pressure sensors: Materials,modeling,devices,and manufacturing. Advanced Functional Materials201929(12):1808509.
4 Liang Z W, Cheng J H, Zhao Q,et al. Tactile sensors:High‐performance flexible tactile sensor enabling intelligent haptic perception for a soft prosthetic hand. Advanced Materials Technologies20194(8):1970041.
5 Kim J S, Lee S C, Hwang J,et al. Iontronic graphene tactile sensors: Enhanced sensitivity of iontronic graphene tactile sensors facilitated by spreading of ionic liquid pinned on graphene grid. Advanced Functional Materials202030(14):2070089.
6 Meng K Y, Wu Y F, He Q,et al. Ultrasensitive fingertip?contacted pressure sensors to enable continuous measurement of epidermal pulse waves on ubiquitous object surfaces. ACS Applied Materials & Interfaces201911(50):46399-46407.
7 Liu M M, Pu X, Jiang C Y,et al. Large?area all?textile pressure sensors for monitoring human motion and physiological signals. Advanced Materials201729(41):1703700.
8 Wang Y C, Chen J N, Mei D Q. Recognition of surface texture with wearable tactile sensor array:A pilot study. Sensors and Actuators A:Physical2020(307):111972.
9 Kumar A. Methods and materials for smart manufacturing:Additive manufacturing,internet of things,flexible sensors and soft robotics. Manufacturing Letters2018(15):122-125.
10 Badrul F, Halim K A A, Salleh M A A M,et al. Preliminary investigation on the correlation between mechanical properties and conductivity of low?density polyethylene/carbon black (LDPE/CB) conductive polymer composite (CPC). Journal of Physics:Conference Series20222169(1):012020.
11 Chang M R, Li Y L, Xu L,et al. A novel assembled carbon black/carbon nanotubes (CB/MWCNT) nano?structured composite for pressure?sensitive conductive silicon rubber (SR). Journal of Materials Science:Materials in Electronics201829(4):2716-2724.
12 Wang Z F, Jiang R J, Li G M,et al. Flexible dual?mode tactile sensor derived from three?dimensional porous carbon architecture. ACS Applied Materials & Interfaces20179(27):22685-22693.
13 Sacco L N, Vollebregt S. Overview of engineering carbon nanomaterials such as carbon nanotubes (CNTs),carbon nanofibers (CNFs),graphene and nanodiamonds and other carbon allotropes inside porous anodic alumina (PAA) templates. Nanomaterials202313(2):260.
14 Kareem M H, Hussein A M A, Hussein H T. Preparation high quality ethanol gas sensor by modifying porous silicon (PS) surface with carbon nanotube (CNTs). Optik2022(259):168826.
15 Gao J F, Li B, Huang X W,et al. Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene?decorated electrospun nanofibers for human motion monitoring. Chemical Engineering Journal2019,373:298-306.
16 Guo S Z, Lin Y P, Lian Z Q,et al. A label?free ultrasensitive microRNA?21 electrochemical biosensor based on MXene (Ti3C2)?reduced graphene oxide?Au nanocomposites. Microchemical Journal2023,190:108656.
17 张彪. 基于导电结构构建的纳米碳/硅橡胶复合材料压阻特性研究. 博士学位论文. 武汉:华中科技大学,2017.
Zhang B. Research on piezoresistive performance of nanocarbons/silicone rubber composites based on conductive structure construction. Ph.D. Dissertation. Wuhan:Huazhong University of Science and Technology,2017.
18 Jason N N, Ho M D, Cheng W L. Resistive electronic skin. Journal of Materials Chemistry C20175(24):5845-5866.
19 Duan L Y, Spoerk M, Wieme T,et al. Designing formulation variables of extrusion?based manu?facturing of carbon black conductive polymer composites for piezoresistive sensing. Composites Science and Technology2019(171):78-85.
20 Zhan P F, Zhai W, Wang N,et al. Electrically conductive carbon black/electrospun polyamide 6/poly(vinyl alcohol) composite based strain sensor with ultrahigh sensitivity and favorable repeatability. Materials Letters2019(236):60-63.
21 Alshammari B A, Al?Mubaddel F S, Karim M R,et al. Addition of graphite filler to enhance electrical,morphological,thermal,and mechanical properties in poly (ethylene terephthalate):Experimental charac?terization and material modeling. Polymers201911(9):1411.
22 Cui X H, Chen J W, Zhu Y T,et al. Natural sunlight?actuated shape memory materials with reversible shape change and self?healing abilities based on carbon nanotubes filled conductive polymer composites. Chemical Engineering Journal2020(382):122823.
23 Chen J W, Li H, Yu Q Z,et al. Strain sensing behaviors of stretchable conductive polymer composites loaded with different dimensional conductive fillers. Composites Science and Technology2018(168):388-396.
24 Zheng Y J, Li Y L, Dai K,et al. Conductive thermoplastic polyurethane composites with tunable piezoresistivity by modulating the filler dimen?sionality for flexible strain sensors. Composites Part A:Applied Science and Manufacturing2017,101:41-49.
25 Yamada T, Hayamizu Y, Yamamoto Y,et al. A stretchable carbon nanotube strain sensor for human?motion detection. Nature Nanotechnology20116(5):296-301.
[1]  薛 洁,彭建彪,焦昭钰,薛乐平,黄俊帆,高士祥*. 羧基化多壁碳纳米管促进类芬顿体系催化降解苄氯酚[J]. 南京大学学报(自然科学版), 2017, 53(2): 238-.
[2] 赵玉敏,万海勤*,许昭怡. 碳纳米管吸附还原溴酸盐研究[J]. 南京大学学报(自然科学版), 2017, 53(2): 286-.
[3]  王续杨,廖高民,杨朝晖*. 水辅助CVD法合成碳纳米管阵列以及制备取向碳纳米管阵列/环氧树脂多孔复合膜
[J]. 南京大学学报(自然科学版), 2016, 52(3): 520-527.
[4] 张淑娟,周丽霞,潘丙才. 碳纳米管在水溶液中的聚集和沉降行为研究[J]. 南京大学学报(自然科学版), 2014, 50(4): 405-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!