南京大学学报(自然科学版) ›› 2014, Vol. 50 ›› Issue (3): 320–.

• • 上一篇    下一篇

GaN纳米柱的量子效率研究

李扬扬1,陈 鹏1,2*,蒋府龙1,杨国锋1,刘 斌1,谢自立1,修向前1,韩 平1,赵 红1,华雪梅1,施 毅1,张 荣1,郑有炓1   

  • 出版日期:2014-06-01 发布日期:2014-06-01
  • 作者简介:(1.南京大学电子科学与工程学院,江苏省光电功能材料重点实验室,南京,210093; 2.南京大学扬州光电研究院,扬州,225009)
  • 基金资助:
    国家重点基础研究发展规划(2011CB301900),国家高技术研究发展规划(2009AA03A198),国家自然科学基金(61176063,60990311,60936004),江苏省自然科学基金(BK2008019,BK2010385,BK2009255,BK2010178)

The quantum efficiency study of GaN nanorods

Li Yangyang1, Chen Peng1,2, Jiang Fulong1, Yang Guofeng1, Liu Bin1, Xie Zili1, Xiu Xiangqian1,Han Ping1, Zhao Hong1, Hua Xuemei1, Shi Yi1, Zhang Rong1, Zheng Youdou1   

  • Online:2014-06-01 Published:2014-06-01
  • About author: (1. Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China; 2. Nanjing University Institute of Optoelectronics at Yangzhou, Yangzhou, 225009, China)

摘要: 主要通过低温和室温变功率光致发光(PL)谱的实验手段,研究了GaN纳米柱和对应薄膜(作为参考)的量子效率表现。实验中发现在室温,激发光功率为0.5 mW时,GaN纳米柱的积分PL强度是薄膜的12.2倍,这表明GaN纳米柱具有比薄膜更高的内量子效率和光引出效率。另外,依据高低温积分PL强度比的方法计算得到激发光功率0.5 mW时,GaN纳米柱的内量子效率低于薄膜,该计算结果违背由实验现象得到的结果,这表明该内量子效率的计算方法是不合适的,因而建立了一种新模型,得到GaN纳米柱和薄膜的内量子效率比随激发光功率的变化规律,结果表明GaN纳米柱的内量子效率表现显著优于薄膜。

Abstract: The purpose of the study is to compare the quantum efficiency performance of GaN nanorods and as-grown planar by excitation power dependent photoluminescence (PL) at the temperature of 6 and 300K. An enhancement of 12.2 times in the room temperature integrated PL intensity is observed from the GaN nanorods, in comparison to that of as-grown planar, with the excitation power of 0.5 mW. This large integrated PL intensity enhancement of GaN nanorods can be attributed to the improvement of IQE as well as light extraction efficiency. However, the IQE of GaN nanorods is smaller than that of as-grown planar by using traditional method of calculating IQE, defined as IQE=IPL300K/IPL6K, with the excitation power of 0.5 mW, which is opposite to the above experimental phenomena. It means that the traditional method is inappropriate. Therefore, a new model for calculating IQE is put forward. According to the new model, the ratio of IQE of GaN nanorods over that of as-grown planar as a function of excitation power at 6 and 300K can be achieved. The result turns out that the IQE performance of GaN nanorods is significantly better than that of as-grown planar, which is in agreement with the above experimental phenomena.

[1] Nakamura S. The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science, 1998, 281: 956~961.
[2] Zolper J C, Shul R J, Baca A G, et al. Ion-implanted GaN junction field effect transistor. Applied Physics Letters, 1996, 68(16): 2273~2275.
[3] Nakamura S, Senoh M, Nagahama S I, et al. Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates. Applied Physics Letters, 1998, 72(16): 2014 ~2016.
[4] Nakamura S, Senoh M, Nagahama S I, et al. Present status of InGaN/GaN/AlGaN-based laser diodes. Journal of Crystal Growth, 1998, 190: 820~825.
[5] Monroy E, Hamilton M, Walker D, et al. High-quality visible-blind AlGaN p-i-n photodiodes. Applied Physics Letters, 1999, 74(8): 1171~1173.
[6] Hung S C, Su Y K, Chang S J, et al. GaN nanocolumns formed by inductively coupled plasmas etching. Physica E, 2005, 28: 115~120.
[7] Sekiguchi H, Nakazato T, Kikuchi A, et al. Structural and optical properties of GaN nanocolumns grown on (0001) sapphire substrates by rf-plasma-assisted molecular-beam epitaxy. Journal of Crystal Growth, 2007, 300: 259~262.
[8] Billeb A, Grieshaber W, Stocker D, et al. Microcavity effects in GaN epitaxial films and in Ag/GaN/sapphire structures. Applied Physics Letters, 1997, 70(21): 2790~2792.
[9] Lee Y J, Chiu C H, Chih C K,et al. Study of the excitation power dependent internal quantum efficiency in InGaN/GaN LEDs grown on patterned sapphire substrate. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(4): 1137~1143.
[10] Inoue Y, Hoshino T, Takeda S, et al. Strong luminescence from dislocation-free GaN nanopillars. Applied Physics Letters, 2004, 85(12): 2340~2341.
[11] Van Nostrand J E, Averett K L, Cortez R, et al. Molecular beam epitaxial growth of high-quality GaN nanocolumns. Journal of Crystal Growth, 2006, 287: 500~503.
[12] Sanchez-Paramo J, Calleja J M, Sanchez-Garcia M A, et al. Structural and optical characterization of intrinsic GaN nanocolumns. Physica E, 2002, 13: 1070~1073.
[13] Xu B S, Zhai L Y, Liang J, et al. Synthesis and characterization of high purity GaN nanowires. Journal of Crystal Growth, 2006, 291: 34~39.
[14] Cheng G S, Zhang L D, Zhu Y, et al. Large-scale synthesis of crystalline gallium nitride nanowires. Applied Physics Letters, 1999, 75(16): 2455~2457.
[15] Ryu H Y, Hwang J K, Song D S, et al. Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures. Applied Physics Letters, 2001, 78(9): 1174~1176.
[16] Kuo M L, Lee Y J, Thomas C S, et al. Large enhancement of light-extraction efficiency from optically pumped, nanorod light-emitting diodes. Optics Letters, 2009, 34(13): 2078~2080.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!