南京大学学报(自然科学版) ›› 2019, Vol. 55 ›› Issue (5): 804–812.doi: 10.13232/j.cnki.jnju.2019.05.013

• • 上一篇    下一篇

基于响度级、耳间互相关系数和中心频率的主观声场宽度预测模型

王鹏,林志斌()   

  1. 近代声学教育部重点实验室,南京大学声学研究所,南京,210093
  • 收稿日期:2019-03-02 出版日期:2019-09-30 发布日期:2019-11-01
  • 通讯作者: 林志斌 E-mail:zblin@nju.edu.cn
  • 基金资助:
    国家自然科学基金(11874218)

A prediction model of auditory source width based on loudness level,interaural cross⁃correlation coefficient and center frequencies

Peng Wang,Zhibin Lin()   

  1. Key Laboratory of Modern Acoustics,Ministry of Education, Institute of Acoustics of Nanjing University,Nanjing,210093,China
  • Received:2019-03-02 Online:2019-09-30 Published:2019-11-01
  • Contact: Zhibin Lin E-mail:zblin@nju.edu.cn

摘要:

耳机回放音频时,大脑感知到的音频的主观声场宽度受其响度级、耳间互相关系数和频率成分的影响显著.采用虚拟声学指针作为参考信号,针对响度级在60~80方,耳间互相关系数在0~1的倍频程信号进行了主观声场宽度听音实验.实验结果表明:随着响度级的提高主观声场宽度在不同频段有不同的增幅,增幅最大值在200 Hz附近,最小值在1600 Hz附近,每增加10方,平均声场宽度增幅为5.4°;随着耳间互相关系数的降低,主观声场宽度的增幅在400~800 Hz最大,耳间互相关系数每降低0.2,主观声场宽度增加约4.8°.根据实验结果建立了一个基于响度级、耳间互相关系数和中心频率的三因素主观声场宽度预测模型.验证实验表明,该模型的预测结果和听音者的实验结果误差在5.4°,符合实验的精度要求,能够对给定信号的声场宽度进行有效的预测.

关键词: 响度级, 耳间互相关系数, 中心频率, 主观声场宽度, 预测模型

Abstract:

Auditory source width (ASW) is the perceived width of an auditory event of a stimulus,which has complicated relationships with the interaural cross?correlation coefficien (IACC),loudness level and frequency. In this paper,the virtual acoustics pointer method is used as the reference signals to investigate the relationship for headphone users. It is found that increasing the loudness level increases the ASW,but with different degrees at different frequencies. The minimum increment of auditory source width appears around 1600 Hz and the maximum occurs around 200 Hz. The auditory source width broadens approximately 4.8° in average with 0.2 reduction of the interaural cross?correlation coefficient,and approximately 5.4° with 10 phons loudness level increment. The increment of auditory source width with the interaural cross?correlation coefficient decrease is more significant around 400~800 Hz and the increment of auditory source width with the loudness level increase is larger at frequency below 800 Hz. A predition model is obtained by curve fitting the testing data,which can be used to predict the auditory source width of a stimulus with fixed loudness level,fixed IACC and fixed center frequency. The verification experiment shows that the error between the model and the experimental results is 5.4°,which meets the accuracy requirements of the experiment,and can effectively predict the ASW of a fixed signal.

Key words: loudness levels, interaural cross?correlation coefficient, center frequency, auditory source width, prediction model

中图分类号: 

  • O429

图1

不同响度级、不同耳间互相关系数下主观声场宽度的均值和95%置信区间结果"

图2

不同响度级、不同频段处主观声场宽度均值结果"

图3

耳间互相关系数减小时,主观声场宽度均值(实线)和主观声场宽度增量均值(线段)结果"

图4

0.2间隔变化的耳间互相关系数下,主观声场宽度增量的均值结果"

表 1

多因素方差分析结果"

F显著性pη2
频率96.5960.00026.5%
响度级106.6910.00010.2%
耳间互相关系数151.2750.00028.8%
频率*响度级0.5210.9230.4%
频率*耳间互相关系数1.4810.0352.7%
响度级*耳间互相关系数0.5830.8290.3%
频率*响度级*耳间互相关系数0.1471.0000.5%

图5

预测模型和验证实验的对比结果"

1 BlauertJ,AllenJ S,RossingT D. Spatial hearing. American Journal of Physics,1998,53(9):926-927.
2 MorimotoM,IidaK,FurueY. Relation between auditory source width in various sound fields and degree of interaural cross?correlation. Applied Acoustics,1993,38(2-4):291-301.
3 OkanoT,BeranekL L,HidakaT. Relations among interaural cross?correlation coefficient (IACCE),lateral fraction (LFE),and apparent source width (ASW) in concert halls. The Journal of the Acoustical Society of America,1998,104(1):255-265.
4 MorimotoM,IidaK. A practical evaluation method of auditory source width in concert halls. Journal of the Acoustical Society of Japan (E),1995,16(2):59-69.
5 BlauertJ,LindemannW. Spatial mapping of intracranial auditory events for various degrees of interaural coherence. The Journal of the Acoustical Society of America,1986,79(3):806-813.
6 K?sbachJ,MarschallM,EppB,et al. The relation between perceived apparent source width and interaural cross?correlation in sound reproduction spaces with low reverberation. In: Proceedings of DAGA 2013. Merano,Italy: DAGA Press,2013.
7 MorimotoM,MaekawaZ. Effects of low frequency components on auditory spaciousness. Acta Acustica United with Acustica,1988,66(4):190-196.
8 MasonR,BrookesT,RumseyF. Frequency dependency of the relationship between perceived auditory source width and the interaural cross?correlation coefficient for time?invariant stimuli. The Journal of the Acoustical Society of America,2005,117(1):1337-1350.
9 MarshallA H,BarronM. Spatial responsiveness in concert halls and the origins of spatial impression. Applied Acoustics,2001,62(2):91-108.
10 WitewI B,BuechlerJ A. The perception of apparent source width and its dependence on frequency and loudness. The Journal of the Acoustical Society of America,2006,120(5):3224-3224.
11 MasonR,BrookesT,RumseyF. Development of the interaural cross?correlation coefficient into a more complete auditory width prediction model∥The 18th International Congress on Acoustics.Kyoto,Japan:ICA Press,2004:2453-2456.
12 WhitmerW M,SeeberB U,AkeroydM A. Apparent auditory source width insensitivity in older hearing?impaired individuals. The Journal of the Acoustical Society of America,2012,132(1):369-379.
13 BeckerJ,SappM,G?rgesF. New approach in measuring auditory source width. The Journal of the Acoustical Society of America,1999,105(2):1190-1190.
14 BeckerJ,SappM. Synthetic soundfields for the rating of spatial perceptions. Applied Acoustics,2001,62(2):217-228.
15 MasonR,BrooksT,RumseyF. Creation and verification of a controlled experimental stimulus for investigating selected perceived spatial attributes∥Audio Engineering Society Convention 114. Amsterdam,The Netherlands:Audio Engineering Society Press,2003.
16 SusnikR,SodnikJ,TomazicS. Sound source choice in HRTF acoustic imaging∥HCI International Adjunct Proceedings.Heraklion,Greece: Crete University Press,2003.
17 SodnikJ,SusnikR,TomazicS. Acoustic signal localization through the use of head related transfer functions. Systemics,Cybernetics and informatics,2004,2(6):56-59.
18 WenzelE M,ArrudaM,KistlerD J,et al. Localization using nonindividualized head?related transfer functions. The Journal of the Acoustical Society of America,1993,94(1):111-123.
19 Vision and Modeling Group. HRFT Measurements of a KEMAR Dummy head Microphone. Cambridge,MA,USA:Media Laboratory Technical Report 280,Massachusetts Institute of Technology,1994.
20 SodnikJ,Su?nikR,?tularM,et al. Spatial sound resolution of an interpolated HRIR library. Applied Acoustics,2005,66(11):1219-1234.
21 ISO. Acoustics?Normal equal?loudness?level contours. ISO226: 2003.
22 GenesisS A. Loudness Toolbox. AcousticsGenesis. France:2009.
23 Sch?rerZ,LindauA. Evaluation of equalization methods for binaural signals.∥Audio Engineering Society Convention 126. Munich,Germany:Audio Engineering Society Press,2009.
24 ZahorikP,TamC,WangK,et al. Localization accuracy in 3D sound displays: The role of visual?feedback training∥ARL Federated Laboratory 5th Annual Symposium,Proceedings of the Advanced Displays & Interactive Displays Consortium. College Park,MD,USA: Army Research Laboratory Press,2001:17-22.
25 GescheiderG A. Psychophysics:the fundamentals. New York: Psychology Press,1997.
26 HesseA. Comparison of several psychophysical procedures with respect to threshold estimates,reproducibility and efficiency. Acta Acustica united with Acustica,1986,59(4):263-273.
27 CronbachL J. Coefficient alpha and the internal structure of tests. Psychometrika,1951,16(3):297-334.
28 SahaiH,AgeelM I. The analysis of variance. New York: John Wiley & Sons,Inc,1959.
[1]  王卓君,申德荣*,聂铁铮,寇 月,于 戈.  UCM-PPM:基于用户分级的多参量Web预测模型[J]. 南京大学学报(自然科学版), 2018, 54(1): 85-.
[2]  刘紫赞,沈勇,王思理,沈坚
.  用客观测量数据预测微型扬声器感知音质的复回归模型[J]. 南京大学学报(自然科学版), 2012, 48(5): 648-653.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李嘉明, 邹 勇, 郑 浩, 魏钟波, 杨柳燕, 缪爱军. 养殖塘生态系统重金属污染状况与风险评价[J]. 南京大学学报(自然科学版), 2019, 55(2): 272 -281 .
[2] 徐扬,周文瑄,阮慧彬,孙雨,洪宇. 基于层次化表示的隐式篇章关系识别[J]. 南京大学学报(自然科学版), 2019, 55(6): 1000 -1009 .
[3] 柴变芳,魏春丽,曹欣雨,王建岭. 面向网络结构发现的批量主动学习算法[J]. 南京大学学报(自然科学版), 2019, 55(6): 1020 -1029 .
[4] 段友祥,柳璠,孙歧峰,李洪强. 基于相带划分的孔隙度预测[J]. 南京大学学报(自然科学版), 2019, 55(6): 934 -941 .
[5] 李俊余, 李星璇, 王霞, 吴伟志. 基于三元因子分析的三元概念约简[J]. 南京大学学报(自然科学版), 2020, 56(4): 480 -493 .
[6] 郑建兴,李沁文,王素格,李德玉. 基于翻译模型的异质重边信息网络链路预测研究[J]. 南京大学学报(自然科学版), 2020, 56(4): 541 -548 .