南京大学学报(自然科学版) ›› 2018, Vol. 54 ›› Issue (2): 413–.

• • 上一篇    下一篇

 取代基团对太阳能电池电子受体材料石墨烯衍生物导电性的影响

 丁男菊1*,牛孟霄2,张超智2*   

  • 出版日期:2018-03-31 发布日期:2018-03-31
  • 作者简介:1.无锡科技职业学院电子技术学院,无锡,214028;
    2.南京信息工程大学环境科学与工程学院,南京,210044
  • 基金资助:
     基金项目:教育部留学回国启动基金(2013S010),国家自然科学基金(11305091)
    收稿日期:2017-11-09
    *通讯联系人,E-mail:7899812@qq.comchzhzhang@sohu.com

Effect of substituent groups at graphene derivatives used as electron acceptors of solar cells on their electroconductivity

 Ding Nanju1*,Niu Mengxiao2,Zhang Chaozhi2*   

  • Online:2018-03-31 Published:2018-03-31
  • About author:1.Wuxi Vocational College of Science and Technology,Wuxi,214028,China;
    2.Nanjing University of Information Science and Technology,Nanjing,210044,China

摘要:  设计含有F,Cl,Br,OH,SO3H,NO2,COOH,CN或CF3取代基团的石墨烯衍生物的结构模型,研究有机太阳能电池电子受体材料石墨烯衍生物的导电性. 使用Gaussian09软件,采用密度泛函理论计算方法在B3LYP/6-31G(d)水平上,优化取代石墨烯的空间结构,计算取代石墨烯的电荷分布,考察各取代石墨烯的带隙和打开狄拉克点的难易. 结果表明:在取代石墨烯接收一个电子前后,含有Br,SO3H,CF3或CN基团的取代石墨烯比含有F,OH,NO2,Cl或COOH基团的取代石墨烯均具有更好的导电性,含有Br,CN或CF3基团的取代石墨烯打开狄拉克点相对比较容易. 因此,含有Br,CN或CF3基团的取代石墨烯是较好的有机太阳能电池电子导电材料,其中Br取代石墨烯是最优的导电材料.

Abstract:  A molecular model of substituted graphene containing F,Cl,Br,OH,SO3H,NO2,COOH,CN or CF3 groups was designed to study the conductivity of electron acceptors in organic solar cells. Structures of these substituted graphenes were optimized by the density functional theory(DFT)calculations using Gaussian09 software at the B3LYP/6-31G(d)level. Their charge distribution was acquired from output files. Bandgap values and Dirac points of the substituted graphenes were studied. The calculation results suggested that electroconductivities of the substituted graphenes containing Br,SO3H,CN,or CF3 would be better than corresponding other substituted graphenes containing F,Cl,OH,NO2 or COOH,with or without an accepted electron. Moreover,the Dirac points of the substituted graphenes containing Br,CN or CF3 groups would be more easily opened than the other substituted graphenes. Therefore,the substituted graphenes containing Br,CN or CF3 groups would be better electronic conductive materials for organic solar cells. Moreover,Br substituted graphene would be the best conductive materials among these substituted graphenes.

 

[1] Bai H T,Wang Y F,Cheng P,et al. Acceptor-donor-acceptor small molecules based on indacenod Ithiophene for efficient organic solar cells. ACS Applied Materials & Interfaces,2014,6(11):8426-8433.
[2] Lin J F,Yen W C,Chang C Y,et al. Enhancing organic-inorganic hybrid solar cell efficiency using rod-coil diblock polymer additive. Journal of Materials Chemistry A,2013,1(3):665-670.
[3] Hu Z C,Ying L,Huang F,et al. Towards a bright future:Polymer solar cells with power conversion efficiencies over 10%. Science China Chemistry,2017,60(5):571-582.
[4] Sun Y Y,Zhang W H,Chi H J,et al. Recent development of graphene materials applied in polymer solar cell. Renewable and Sustainable Energy Reviews,2015,43:973-980.
[5] 孟维利. 石墨烯基杂化材料的制备及其太阳电池研究. 博士学位论文. 合肥:中国科学技术大学,2016.(Meng W L. Graphene-based hybrid materials for solar cells. Ph. D. Dissertation. Hefei:University of Science and Technology of China,2016. )
[6] Tan C L,Cao X H,Wu X J,et al. Recent advances in ultrathin two-dimensional nanomaterials. Chemical Reviews,2017,117(9):6225-6331. 
[7] Chen X X,Chen B L. Macroscopic and spectroscopic investigations of the adsorption of nitroaromatic compounds on graphene oxide,reduced graphene oxide,and graphene nanosheets. Environmental Science & Technology,2015,49(10):6181-6189.
[8] Ganji M D,Tajbakhsh M,Kariminasab M,et al. Tuning the LUMO level of organic photovoltaic solar cells by conjugately fusing graphene flake:A DFT-B3LYP study. Physica E:Low-dimensional Systems and Nanostructures,2016,81:108-115.
[9] Putri L K,Ng B J,Ong W J,et al. Heteroatom nitrogen-and boron-doping as a facile strategy to improve photocatalytic activity of standalone reduced graphene oxide in hydrogen evolution. ACS Applied Materials & Interfaces,2017,9(5):4558-4569.
[10] Wu X,Zhao H Y,Yan D,et al. Doping of graphene using ion beam irradiation and the atomic mechanism. Computational Materials Science,2017,129:184-193.
[11] Barhoumi M,Rocca D,Said M,et al. A first principle study of graphene functionalized with hydroxyl,nitrile,or methyl groups. The Journal of Chemical Physics,2017,146(4):044705.
[12] Yeo J S,Yun J M,Jung Y S,et al. Sulfonic acid-functionalized,reduced graphene oxide as an advanced interfacial material leading to donor polymer-independent high-performance polymer solar cells. Journal of Materials Chemistry A,2014,2(2):292-298.
[13] Kim Y J,Kim Y,Novoselov K,et al. Engineering electrical properties of graphene:Chemical approaches. 2D Materials,2015,2(4):042001.
[14] 周 琳,张黎明,廖 磊等. 石墨烯的光化学修饰方法. 化学学报,2014,72(3):289-300.(Zhou L,Zhang L M,Liao L,et al. Photochemical modification of graphene. Acta Chimica Sinica,2014,72(3):289-300. )
[15] Frisch M J,Hratchian H P,Nielsen A B. Gaussian 09:Programmer’s reference. Wallingford:Gaussian,2009.
[16] Al-Abboodi M H,Ajeel F N,Khudhair A M. Influence of oxygen impurities on the electronic properties of graphene nanoflakes. Physica E:Low-Dimensional Systems and Nanostructures,2017,88:1-5.
[17] Prascher B P,Woon D E,Peterson K A,et al. Gaussian basis sets for use in correlated molecular calculations. VII. Valence,core-valence,and scalar relativistic basis sets for Li,Be,Na,and Mg. Theoretical Chemistry Accounts,2011,128(1):69-82.
[18] Hu W,Lin L,Yang C,et al. Electronic structure and aromaticity of large-scale hexagonal graphene nanoflakes. The Journal of Chemical Physics,2014,141(21):214704.
[19] Parr R G,Yang W T. Density functional approach to the frontier-electron theory of chemical reactivity. Journal of the American Chemical Society,1984,106(14):4049-4050.

[20] Zhou L,Zhou L S,Wang X,et al. Trifluoromethylation of graphene. APL Materials,2014,2(9):092505.
[21] Sahin H,Ciraci S. Chlorine adsorption on graphene:Chlorographene. The Journal of Physical Chemistry C,2012,116(45):24075-24083. 
[22] Nair R R,Ren W C,Jalil R,et al. Fluorographene:A two-dimensional counterpart of Teflon. Small,2010,6(24):2877-2884.
[23] 徐小志,余佳晨,张志宏等. 石墨烯打开带隙研究进展. 科学通报,2017,62(20):2220-2232.(Xu X Z,Yu J C,Zhang Z H,et al. Bandgap opening in graphene. Chinese Science Bulletin,2017,62(20):2220-2232. )
[24] Chang C Y,Cheng Y J,Hung S H,et al. Combination of molecular,morphological,and interfacial engineering to achieve highly efficient and stable plastic solar cells. Advanced Materials,2012,24(4):549-553.
[25] Barclay T M,Cordes A W,Oakley R T,et al. 2,5-Diamino-3,6-dichloropyrazine. Acta Crystallographica Section C,1998,54(7):1018-1019.
[26] Zhang C Z,Li T,Yuan Y,et al. Effect of bromine substituent on optical properties of aryl compounds. Journal of Physical Organic Chemistry,2016,30(5):e3620.
[27] 韩长日. 离子基团和中性基团电负性的计算. 化学学报,1990,48(7):627-631.(Han C R. The calculation of the ionic group electronegativities and neutral group electronegativities. Acta Chimica Sinica,1990,48(7):627-631. )
[28] Bratsch S G. Electronegativity equalization with pauling units. Journal of Chemical Education,1984,61(7):588.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!