南京大学学报(自然科学版) ›› 2018, Vol. 54 ›› Issue (2): 398–.

• • 上一篇    下一篇

福建紫金山矿田温屋斑岩体与罗卜岭斑岩体地球化学特征对比研究

 迟 哲1,倪 培1*,廖剑锋2,范明森1,刘 政1,张 鑫1   

  • 出版日期:2018-03-31 发布日期:2018-03-31
  • 作者简介:1.内生金属矿床成矿机制研究国家重点实验室,地质流体研究所,南京大学地球科学与工程学院,南京,210023;
    2.福建地质调查研究院,福州,350013
  • 基金资助:
     基金项目:国家重点研发计划(2016YFC0600206),中国地质调查项目(12120114028601)
    收稿日期:2018-01-08
    *通讯联系人,E-mail:peini@nju.deu.cn

 The comparative study of the geochemistry of Wenwu porphyry and Luoboling porphyry in Zijinshan ore-field,Fujian province

 Chi Zhe1,Ni Pei1*,Liao Jianfeng2,Fan Mingsen1,Liu Zheng1,Zhang Xin1   

  • Online:2018-03-31 Published:2018-03-31
  • About author:1.State Key Laboratory for Mineral Deposits Research,Institute of Geo-Fluids,School of Earth Sciences and Engineering,Nanjing University,Nanjing,210023,China;
    2.Fujian Institute of Geological Survey,Fuzhou,350013,China

摘要:  温屋矿区位于紫金山矿田的北部,区内发育良好的火山机构. 深部的温屋斑岩体具有钾化、青磐岩化等蚀变,并具有网脉状矿化特征,但目前没有发现富矿体. 尝试对比贫矿的温屋斑岩体和区内与之同期的富矿罗卜岭斑岩体的岩石地球化学特征,探究影响其成矿的相关因素. 研究显示温屋斑岩体与罗卜岭斑岩体主量元素成分相似,并均具有亏损Nb,Ta,Ti等高场强元素和Eu异常不明显的特征. 但是温屋斑岩体具有显著的Sr亏损和较大的MREE/HREE特征,而罗卜岭斑岩体基本无Sr异常,MREE与HREE配分较小. 地球化学特征的差异可能反映了两者经历了不同的分离结晶过程. 温屋斑岩以斜长石的分离结晶为主;罗卜岭斑岩体斜长石的分离结晶被抑制并可能经历了角闪石的分离结晶,相对富水. 温屋斑岩体的相对贫水导致成矿元素难以在热液中富集,可能制约了温屋地区的成矿潜力. 但是,在火山机构附近裂隙发育,有利于富矿流体的集中,因此火山机构附近可以成为有利的成矿物质富集区域.

Abstract:  Zijinshan ore district is a famous porphyry and epithermal mineralization system in China,which consists of Zijinshan high-sulfidation epithermal deposit,Luoboling porphyry deposit and Yueyang intermediate-sulfidation epithermal deposit. Wenwu prospective area is located in the north of Zijinshan ore district. The surface of this area is predominately covered by the early Cretaceous volcanic rock and volcanic edifice is well-developed. In deep,Wenwu porphyry shows characteristics of porphyry type mineralization,as indicated by propylitic alternation,potassic alternation and stockwork veins. According to the zircon U-Pb dating,the diagenetic age of Wenwu porphyry is similar to that of Luoboling porphyry,but Wenwu porphyry only exhibits weak mineralization compared to Luoboling porphyry. In this study,we try to compare the characteristics of the geochemistry of these two porphyries to reveal diagenetic process and controlling factor of mineralization. These two porphyries show similar characteristic of major elements. On the trace element and REE diagram,these two porphyries exhibit characteristics of depletion in high field strength elements and weak Eu anomaly. However,compared with the Luoboling porphyry,Wenwu porphyry exhibits obvious depletion of strontium and flat to concave-upward MREE-HREE pattern,which indicates different processes of fractional crystallization caused by different volatile contents. As suggested by their geochemical characteristics,the volatile content of Wenwu porphyry is relatively low indicated by plagioclase fractionation and that of Luoboling porphyry is rich suggested by abundant hornblende fractionation,respectively. The low mineralization grade in Wenwu may be caused by low volatile content of the porphyry,which limits the enrichment of metals. Nevertheless,the formation of stockwork,breccia pipes or vent structures near the volcanic edifice may benefits the accumulation and convertion ore-forming fluid,which could promote mineralization potential in this area.

 [1] Mudd G,Weng Z,Jowitt S. A detailed assessment of global Cu resource trends and endowments. Economic Geology,2014,108:163-1183.
[2] Seedorff E,Dilles J H,Proffett J M,et al. Porphyry deposits:characteristics and origin of hypogene features. Economic Geology,2005,100th Anniversary Volume:251-298.
[3] Sillitoe R H. Porphyry copper systems. Economic Geology,2010,105:3-41.
[4] Dilles J H. Petrology of the Yerington Batholith,Nevada:Evidence for evolution of porphyry copper ore fluids. Economic Geology,1987,82:1750-1789.
[5] Seedorff E,Barton M D,Stavast W J A,et al. Root zones of porphyry systems:Extending the porphyry model to depth. Economic Geology,2008,103:939-956.
[6] Richards J P. Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au)Deposit Formation. Economic Geology,2003,98:1515-1533.
[7] Audétat A. Simon A C. Magmatic controls on porphyry copper genesis. Economic Geology,2012,Special publication 16:553-572.
[8] Park J W,Campbell I H,Kim J,et al. The role of late sulfide saturation in the formation of a Cu-and Au-rich magma:Insights from the platinum group element geochemistry of Niuatahi-Motutahi Lavas,Tonga Rear Arc. Journal of Petrology,2015,56:59-81.
[9] Mungall J E. Roasting the mantle:Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology,2002,30:915-918.
[10] Jugo P J. Sulfur content at sulfide saturation in oxidized magmas. Geology,2009,37:415-418.
[11] Sun W D,Zhang H,Ling M X,et al. The genetic association of adakites and Cu-Au ore deposits. International Geology Review,2011,53:691-703.
[12] McInnes B I A,Gregoire M,Binns R A,et al. Hydrous metasomatism of oceanic sub-arc mantle,Lihir,Papua New Guinea:Petrology and geochemistry of fluid-metasomatized mantle wedge xenoliths. Earth and Planet Science Letters,2001,188:169-183.
[13] Tomkins A G,Mavrogenes J A. Generation of metal-rich felsic melts during crustal anatexis. Geology,2003,31:765-768.
[14] Wang G G,Ni P,Yao J,et al. The link between subduction-modified lithosphere and the giant Dexing porphyry copper deposit,South China:Constraints from high-Mg adakitic rocks. Ore Geology Reviews,2015,67:109-126.
[15] Cocker H A,Valente D L,Park J W,et al. Using Platinum Group Elements to Identify Sulfide Saturation in a Porphyry Cu System:the El Abra Porphyry Cu Deposit,Northern Chile. Journal of Petrology,2015,56:2491-2514.
[16] 张锦章. 紫金山矿集区地质特征、矿床模型与勘查实践. 矿床地质,2013,32(4):757-766. (Zhang J Z. Geology,exploration model and practice of Zijinshan ore concentrated area. Mineral Deposits,2013,32(4):757-766.)
[17] 张德全,佘宏全,李大新等. 紫金山地区的斑岩-浅成热液成矿系统. 地质学报,2003,77(2):254-261(Zhang D Q,She H Q,Li D X,et al. The porphyry-epithermal metllogenic system in the Zijinshan region,Fujian Province. Acta Geologica Sinica,2003,77(2):254-261)
[18] So C S,Zhang D,Yun S T,et al. Alteration-mineralization zoning and fluid inclusions of the high sulfidation epithermal Cu-Au mineralization at Zijinshan,Fujian Province,China. Economic Geology,1998,93:961-980.
[19] Zhong J,Chen Y J,Pirajno F,et al. Geology,geochronology,fluid inclusion and H-O isotope geochemistry of the Luoboling porphyry Cu-Mo deposit,Zijinshan Orefield,Fujian Province,China. Ore Geology Reviews,2014,57:61-77.
[20] 梁清玲,江思宏,王少怀等. 福建紫金山矿田罗卜岭斑岩型铜钼矿床辉钼矿Re-Os定年及地质意义. 地质学报,2012,86(7):1113-1118. (Liang Q L,Jiang S H,Wang S H,et al. Re-Os dating of molybdenite from the Luoboling porphyry Cu-Mo deposit in the Zijinshan ore field of Fujian Provience and its geological significance. Acta Geologica Sinica,2012,86(7):1113-1118)
[21] 张德全,佘宏全,闫升好等. 福建紫金山地区中生代构造环境转换的岩浆岩地球化学证据. 地质评论,2001,47(6):608-616. (Zhang D Q,Shen H Q,Yan S H,et al. Geochemistry of Mesozoic magmatites in the Zijinshan region and implication on regional tectonic inversion. Geological Review,2001,47(6):608-616.)
[22] Jiang S H,Bagas L,Liang Q L. New insights into the petrogenesis of volcanic rocks in the Shanghang Basin in the Fujian Province,China. Journal of Asian Earth Sciences,2015,105:48-67.
[23] 赵希林,毛建仁,陈 荣等. 闽西南地区才溪岩体锆石SHRIMP定年及其地球化学特征. 岩石矿物学杂志,2007,26:223-231. (Zhao X L,Mao J R,Chen R,et al. Zircon SHRIMP age and geochemical characteristics of the Caixi pluton in southwestern Fujian Province. Acta Petrologica et Mineralogica,2007,26:223-231)
[24] Jiang S H,Liang Q L,Bagas L,et al. Geodynamic setting of the Zijinshan porphyry-epithermal Cu-Au-Mo-Ag ore system,SW Fujian Province,China:Constrains from the geochronology and geochemistry of the igneous rocks. Ore Geology Reviews,2013,53:287-305.
[25] Liu X,Hua R. 40Ar/39Ar dating of adularia from the bitian gold-silver-copper deposit,Fujian province. Geological Review,2005,51:151-155.
[26] 薛 凯,阮诗昆. 福建紫金山矿田罗卜岭铜(钼)矿床地质特征及成因探讨. 资源环境与工程,2008,22(5):491-496. (Xue K,Ruan S K. Geological characteristics and genesis of the Luoboling copper(molybdenum)deposit in Zijinshan ore field. Fujian Resources Environment & Engineering,2008,22(5):491-496.)
[27] Jackson S E,Pearson N J,Griffin W L,et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology,2004,211:47-69.
[28] Andersen T. Correction of common Pb in U-Pb analyses that do not report 204Pb. Chemical Geology,2002,192:59-79.
[29] Ludwing K R. Users Manual for Isoplot/Ex(rev. 2. 49):A geochronological tookit for Microsoft Excel. Berkeley Geochronology Center Special,Publication,2001,1:55.
[30] Wu Y B,Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin,2004,49(15):1554-1569.
[31] Boynton W V. Cosmochemistry of the earth elements:meteorite studies ∥ Henderson R. Rare Earth Element Geochemistry:Developments in Geochemistry. Amsterdam,Holland:Elsevier Press,1984:89-92.
[32] Sun S S,McDonough,W. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. Geological Society London Special Publications,1989,42:313-345.
[33] Gromet L P,Silver L T. REE Variations across the Peninsular Ranges batholith:Implications for batholithic petrogenesis and crustal growth in magmatic arcs. Journal of Petrology,1987,28:75-125.
[34] Klein M,Stosch H G,Seck H A. Partitioning of high fieldstrength and rare-earth elements between amphibole and quartz-dioritic to tonalitic melts:An experimental study Chemical Geology,1997,138:257-271.
[35] Bachmann O,Dungan M A,Bussy F. Insights into shallow magmatic processes in large silicic magma bodies:the trace element record in the Fish Canyon magma body,Colorado:Contributions to Mineralogy and Petrology,2005,149:338-349.
[36] Ridolfi F,Renzulli A,Puerini M. Stability and chemical equilibrium of amphibole in calc-alkaline magmas:An overview,new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology,2010,160:45-66.
[37] Prowatke S,Klemme S. Rare earth element partitioning between titanite and silicate melts:Henry’s law revisited. Geochimica et Cosmochimica Acta,2006,70:4997-5012.
[38] Moore G M,Carmichael I S E. The hydrous phase equilibria(to 3 kbar)of an andesite and basaltic andesite from western Mexico:Constraints on water content and conditions of phenocryst growth. Contributions to Mineralogy and Petrology,1998,130:304-319.
[39] Müntener O,Kelemen P B,Grove T L. The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites:An experimental study. Contributions to Mineralogy and Petrology,2001,141:643-658.
[40] Rooney T O,Franceschi P,Hall C M. Water-saturated magmas in the Panama Canal region:A precursor to adakite-like magma generation?Contributions to Mineralogy and Petrology,2001,161:373-388.
[41] Burnham C W. Magmas and hydrothermal fluids ∥ Barnes H L. Geochemistry of hydrothermal ore deposits. 2nd Edition. New York,NY,USA:John Wiley and Sons Press,1979:71-136.
[42] Naney M T. Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. American Journal of Science,1983,283:993-1033.
[43] Jiang Y H,Jiang S Y,Dai B Z. et al. Discrimination of Ore-Bearing and Barren Porphyries in the Yulong Porphyry Copper Ore Belt,Eastern Tibet. International Geology Review,2008,50:583-595.
[44] Bachmann O,Bergantz G W. On the origin of crystal-poor rhyolites:Extracted from batholithic crystal mushes. Journal of petrology,2004,45:1565-1582.
[45] Bachmann O,Bergantz G W. Rhyolites and their source mushes across tectonic settings. Journal of Petrology,2008,49:2277-2285.
[46] Deering C D,Cole J,Vogel T. A rhyolite compositional continuum governed by lower crustal source conditions in the Taupo Volcanic Zone,New Zealand. Journal of Petrology,2008,49:2245-2276.
[47] Davidson J,Turner S,Handlley H. et al. Amphibole “sponge” in arc crust?Geology,2007,35:787-790.
[48] 李 斌,赵葵东,杨水源等. 福建紫金山矿田二庙沟铜(金)矿区英安玢岩的成因及其成矿意义. 岩石学报,2013,29(12):4167-4185. (Li B,Zhao K D,Yang S Y,et al. Petrogenesis of the porphyritic dacite from Ermiaogou Cu-Au deposit in Zijinshan ore field and its metallogenetic implications. Acta Geologica Sinica,29(12):4167-4185.  
[49] Simon A C,Ripley E M. The Role of magmatic sulfur in the formation of ore deposits. Reviews in Mineralogy & Geochemistry,2011,73:513-578.
[50] Audétat A,Pettke T,Heinrich C A,et al. The composition of magmatic-hydrothermal fluids in barren and mineralized intrusions. Economic Geology,2008,103:877-906.
[51] Audétat A,Li W T. The genesis of Climax-type porphyry Mo deposits:Insights from fluid inclusions and melt inclusions. Ore Geology Reviews,2017,88:436-460.
[52] Richards J P,Spell T,Rameh E,et al. High Sr/Y Magmas Reflect Arc Maturity,High Magmatic Water Content,and Porphyry Cu±Mo±Au Potential:Examples from the Tethyan Arcs of Central and Eastern Iran and Western Pakistan. Economic Geology,2011,107:295-332.
[53] Pasteris J D. Mount Pinatubo volcano and “negative” porphyry copper deposits. Geology,1996,24:1075-1078.
[54] Candela P A. Physics of aqueous phase exsolution in plutonic environments. American Mineralogist,1991,76:1081-1091.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!