南京大学学报(自然科学版) ›› 2018, Vol. 54 ›› Issue (2): 386–.

• • 上一篇    下一篇

 德兴张家畈金矿远景区花岗闪长斑岩年代学、Lu-Hf同位素及成矿指示意义

 李 利1,倪 培1*,王国光1,朱安冬1,范明森1,黄卫平2   

  • 出版日期:2018-03-31 发布日期:2018-03-31
  • 作者简介:1.内生金属矿床成矿机制研究国家重点实验室,地质流体研究所,南京大学地球科学与工程学院,南京,210023;
    2.江西省地质矿产勘查开发局赣东北大队,上饶,334000
  • 基金资助:
     基金项目:国家自然科学基金(41772063),国家重点研发计划(2016YFC0600206),中国地质调查局项目(12120114034601)
    收稿日期:2018-01-07
    *通讯联系人,E-mail:peini@nju.edu.cn

Geochronology and Lu-Hf isotopes of granodiorite porphyries of Zhangjiafan gold prospect area in Dexing and its indication significance for mineralization

 Li Li1,Ni Pei1*,Wang Guoguang1,Zhu Andong1,Fan Mingsen1,Huang Weiping2   

  • Online:2018-03-31 Published:2018-03-31
  • About author:1.State Key Laboratory for Mineral Deposits Research,Institute of Geo-Fluids,School of Earth Science and Engineering,Nanjing University,Nanjing,210023,China;
    2.Northeast Jiangxi Geological Brigade,Jiangxi Bureau of Geology and Mineral Exploration,Shangrao,334000,China

摘要:  德兴矿集区是我国重要的Cu-Au-Mo-Pb-Zn-Ag矿产资源产地,张家畈金矿远景区位于德兴斑岩铜矿田的北西部. 选取张家畈成矿远景区深部的矿化花岗闪长斑岩作为研究对象,对其进行了系统的LA-ICP-MS锆石U-Pb年代学和锆石Lu-Hf同位素分析. 张家畈花岗闪长斑岩两件样品中锆石14个分析点206Pb/238U的加权平均年龄为171±1 Ma(MSWD=0.54). 张家畈花岗闪长斑岩锆石Lu-Hf同位素结果为:εHf(t)为+5.2~+6.3,两阶段模式年龄为813 Ma~883 Ma. 该岩体的原始岩浆来源于新元古代下地壳物质的部分熔融,并在形成过程中可能加入了地幔组分. 中侏罗世,伊泽纳崎板块向华南板块北西向俯冲,在华南内陆产生了一系列伸展型岩浆作用,指示了局部拉伸的环境,因此,张家畈花岗闪长斑岩形成于陆内拉伸的构造背景. 张家畈矿化花岗闪长斑岩的成岩时代及Hf同位素特征均与德兴斑岩铜矿田的成矿花岗闪长斑岩相似,且张家畈成矿远景区内自然金与黄铜矿伴生,因此,其深部可能具有斑岩型矿化.

Abstract:  Dexing ore-concentrated area is the important source of Cu,Au,Mo,Pb,Zn and Ag. Zhangjiafan metallogenic prospect area locates at the northwestern of the Dexing porphyry copper ore field. This paper assesses the deep-seated mineralized granodiorite porphyries in the Zhangjiafan prospect area. A combined study of comprehensive LA-ICP-MS zircon U-Pb dating and Lu-Hf isotopes of the Zhangjiafan mineralized granodiorite porphyries was carried out. The Zhangjiafan mineralized granodiorite porphyries emplaced during Middle Jurassic with a 206Pb/238U weighted average age of ca. 171 Ma(MSWD=0.54). The εHf(t) values and two stage Hf model ages of the Zhangjiafan mineralized granodiorite porphyries are +5.2~+6.3 and 813 Ma~883 Ma respectively. The Zhangjiafan mineralized granodiorite porphyries were probably derived from partial melting of Neoproterozoic lower crust similar with the ore-related granodiorite porphyries in the Dexing porphyry copper ore field. Mantle components probably added in during the formation process of the mineralized granodiorite porphyries. In middle Jurassic,the Izanagi plate initially subducted northwest beneath the South China Block. The stress that may have been quickly propagated to the inland area of the rigid South China Block may have reactivated pre-existing deep fault. The reactivation of the pre-existing deep fault might produce an association of A type,alkaline and bimodal magmatic rocks,suggesting a local extensional environment. Therefore,similar to the ore-related granodiorite porphyries in the Dexing porphyry copper ore field,the Zhangjiafan mineralized granodiorite porphyries might also formed in an intra-continental extensional setting. The age and Hf isotopes of the Zhangjiafan mineralized granodiorite porphyries are similar to the ore-related granodiorite porphyries in the Dexing copper ore field,together with the native gold hosted in chalcopyrite,this paper infer that the Zhangjiafan metallogenic prospect has a porphyry-mineralized potentiality in the deep.

 [1] Sillitoe R H. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-pacific region. Australian Journal of Earth Sciences,2007,44(3):373-388.
[2] Sillitoe R H. Porphyry copper systems. Economic Geology,2010,105:3-41.
[3] Sinclair W. Porphyry deposits. Mineral deposits of canada:a synthesis of major deposit-types,district metallogeny,the evolution of geological provinces,and exploration methods:Geological Association of Canada. Mineral Deposits Division,2007,Special Publication(5):223-243.
[4] Li L,Ni P,Wang G G,et al. Multi-stage fluid boiling and formation of the giant Fujiawu porphyry Cu-Mo deposit in South China. Ore Geology Reviews,2017,81:898-911.
[5] Wang G G,Ni P,Wang R C,et al. Geological,fluid inclusion and isotopic studies of the Yinshan Cu-Au-Pb-Zn-Ag deposit,South China:Implications for ore genesis and exploration. Journal of Asian Earth Sciences,2013,74:343-360.
[6] Wang G G,Ni P,Yao J,et al. The link between subduction-modified lithosphere and the giant Dexing porphyry copper deposit,South China:Constraints from high-Mg adakitic rocks. Ore Geology Reviews,2015,67:109-126.
[7] Zhao C,Ni P,Wang G G,et al. Geology,fluid inclusion,and isotope constraints on ore genesis of the Neoproterozoic Jinshan orogenic gold deposit,South China. Geofluids,2013,13(4):506-527.
[8] 朱 训,黄崇轲,芮宗瑶等. 德兴斑岩铜矿. 北京:地质出版社,1983,336. (Zhu X,Huang C K,Rui Z Y,et al. Dexing porphyry copper deposit. Beijing:Geological Publishing House,1983,336.)
[9] Wang X L,Zhao G C,Zhou J C,et al. Geochronology and Hf isotopes of zircon from volcanic rocks of the Shuangqiaoshan Group,South China:Implications for the Neoproterozoic tectonic evolution of the eastern Jiangnan orogen. Gondwana Research,2008,14(3):355-367.
[10] 江西省地质调查研究院. 江西省德兴张家畈-先告山地区铜金矿远景调查报告,2013. (Jiangxi Geological Survey Institute. The report of prospective investigation for Cu and Au in Zhangjiafan-Xiangaoshan region in Dexing,Jiangxi Province,2013.)
[11] Jackson S E,Pearson N J,Griffin W L,et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology,2004,211(1):47-69.
[12] Andersen T L. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology,2002,192(1):59-79.
[13] Ludwig K R. User’s Manual for isoplot/Ex(Rev.2.49):A geochronological toolkit for microsoft excel. Berkeley Geochronology Center Special Publication,2001,55.
[14] Chu N C,Taylor R N,Chavagnac V,et al. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry:An evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry,2002,17(12):1567-1574.
[15] Scherer E,Münker C,Mezger K. Calibration of the lutetium-hafnium clock. Science,2001,293(5530):683-687.
[16] Blichert-Toft J,Albarède F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth & Planetary Science Letters,1997,148:243-258.
[17] Griffin W L,Wang X,Jackson S E,et al. Zircon chemistry and magma mixing,SE China:In-situ analysis of Hf isotopes,Tonglu and Pingtan igneous complexes. Lithos,2002,61(3):237-269.
[18] Williams I S,Buick I S,Cartwright I. An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reynolds Range,central Australia. Journal of Metamorphic Geology,1996,14(1):29-47.
[19] Kinny P D. Lu-Hf and Sm-Nd isotope systems in zircon. Reviews in Mineralogy & Geochemistry,2003,53(1):327-341.
[20] Knudsen T L,Griffin W,Hartz E,et al. In-situ hafnium and lead isotope analyses of detrital zircons from the Devonian sedimentary basin of NE Greenland:a record of repeated crustal reworking. Contributions to Mineralogy & Petrology,2001,141(1):83-94.
[21] Patchett P J,Kouvo O,Hedge C E,et al. Evolution of continental crust and mantle heterogeneity:Evidence from Hf isotopes. Contributions to Mineralogy & Petrology,1982,78(3):279-297.
[22] Zhao K D,Jiang S Y,Yang S Y,et al. Mineral chemistry,trace elements and Sr-Nd-Hf isotope geochemistry and petrogenesis of Cailing and Furong granites and mafic enclaves from the Qitianling batholith in the Shi-Hang zone,South China. Gondwana Research,2012,22(1):310-324.
[23] 吴福元,李献华,郑永飞等. Lu-Hf同位素体系及其岩石学应用. 岩石学报,2007,23(2):185-220. (Wu F Y,Li X H,Zheng Y F,et al. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica,2007,23(2):185-220.)
[24] 胡瑞忠,毛景文,范蔚茗等. 华南陆块陆内成矿作用的一些科学问题. 地学前缘,2010,17(2):13-26. (Hu R Z,Mao J W,Fan W M,et al. Some scientific questions on the intra-continental metallogeny in the South China continent. Earth Science Frontiers,2010,17(2):13-26.)
[25] 毛景文,谢桂青,李晓峰等. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展. 地学前缘,2004,11(1):45-55. (Mao J W,Xie G Q,Li X F,et al. Mesozoic large scale mineralization and multiple lithospheric extension in South China. Earth Science Frontiers,2004,11(1):45-55.)
[26] 杨明桂,黄永泉,王维甫等. 江西省燕山期陆内活化造山与岩浆成矿作用. 江西地质,2015,16(1):9-20. (Yang M G,Huang Y Q,Wang W F,et al. Yanshanian intracontinental activization-orogenesis and magmatic ore-forming process in Dexing province. Jiangxi Geology,2015,16(1):9-20.)
[27] Wang G G,Ni P,Zhao K D,et al. Petrogenesis of the Middle Jurassic Yinshan volcanic-intrusive complex,SE China:Implications for tectonic evolution and Cu-Au mineralization. Lithos,2012,150:135-154.
[28] Wang G G,Ni P,Zhao C,et al. Spatiotemporal reconstruction of Late Mesozoic silicic large igneous province and related epithermal mineralization in South China:Insights from the Zhilingtou volcanic-intrusive complex. Journal of Geophysical Research:Solid Earth,2016,121(11):7903-7928.
[29] Dong S W,Zhang Y Q,Long C X,et al. Jurassic tectonic revolution in China and new interpretation of the “Yanshan Movement”. Acta Geologica Sinica-English Edition,2008,82(2):334-347.
[30] Isozaki Y. Jurassic accretion tectonics of Japan. Island Arc,1997,6(1):25-51.
[31] Wang Y,Zhou L Y,Zhao L J,et al. Tectonic transformations in the north of eastern China during 170-150 Ma:Causal linkage to the rapid formation of the paleo-Pacific plate. The Geological Society of America Special Paper,2015,513:561-587.
[32] Zhou X M,Sun T,Shen W Z,et al. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:A response to tectonic evolution. Episodes,2006,29(1):26-33.
[33] 张岳桥,徐先兵,贾 东等. 华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录. 地学前缘,2009,16(1):234-247. (Zhang Y Q,Xu X B,Jia D,et al. Deformation record of the change from Indosinian collision-related tectonic system to Yanshanian subduction-related tectonic system in South China during the Early Mesozoic. Earth Science Frontiers,2009,16(1):234-247.)
[34] 陈培荣,华仁民,章邦桐等. 南岭燕山早期后造山花岗岩类:岩石学制约和地球动力学背景. 中国科学,2002,32(4):279-289. (Chen P R,Hua R M,Zhang B T,et al. Early Yanshanian post-orogenic granitoids in the Nanling region-petrological constraints and geodynamic settings. Science in China,2002,32(4):279-289.)
[35] Chen P R,Zhou X M,Zhang W L,et al. Petrogenesis and significance of early Yanshanian syenite-granite complex in eastern Nanling Range. Science China-earth Sciences,2005,48(7):912-924.
[36] He Z Y,Xu X S,Niu Y L. Petrogenesis and tectonic significance of a Mesozoic granite-syenite-gabbro association from inland South China. Lithos,2010,119(3):621-641.
[37] Wang Y J,Fan W M,Guo F,et al. Geochemistry of mesozoic mafic rocks adjacent to the Chenzhou-Linwu fault,South China:Implications for the Lithospheric Boundary between the Yangtze and Cathaysia Blocks. International Geology Review,2003,45(3):263-286.
[38] 朱金初,陈 骏,王汝成等. 南岭中西段燕山早期北东向含锡钨A型花岗岩带. 高校地质学报,2008,14(4):474-484. (Zhu J C,Chen J,Wang R C,et al. Early Yanshanian NE trending Sn/W-Bearing A-type granites in the western-middle part of the Nanling Mts region. Geological Journal of China University,2008,14(4):474-484.)
(责任编辑 吴劲薇)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!